Abstract
The inductive method is a robust and simple non-destructive test to assess the content and the distribution of steel fibres in FRC. Despite the advantages in comparison with other methods, further studies are still needed to define the accuracy, the theoretical basis and the equations for the conversion of the inductance into fibre content and distribution. In fact, although the test provides an indirect estimation of the fibre distribution, currently no equation exists for the assessment of the orientation number, which is a valuable parameter for the design of structures. The objective of the present paper is to address this issue. Initially, the theoretical basis for the calculation of the fibre content is provided. Then, alternative equations are deducted for the fibre contribution and for the orientation number. Different experimental programs and finite element numerical simulations are conducted to evaluate the accuracy of the method and to validate the proposals. The results indicate that the equations currently used may lead to errors of up to 24 %. Instead, the formulation proposed here shows errors far below 2.6 %, allowing the prediction of the orientation number in all directions with a high accuracy. This opens up a new field of application for the test and represents an advance towards the characterization and the quality control of SFRC.
This is a preview of subscription content, access via your institution.












References
Mobasher B, Stang H, Shah SP (1990) Microcracking in fiber reinforced concrete. Cem Concr Res 20(5):665–676
Bentur A (1989) Fiber-reinforced cementitious materials. Mater Sci Concr: 223–285
Blanco A (2013) Characterization and modelling of SFRC elements. PhD Thesis, Universitat Politècnica de Catalunya
Van Gysel A (2000) Studie van het uittrekgedrag van staalvezels ingebed in een cementgebonden matrix met toepassing op staalvezelbeton onderworpen aan buiging. PhD Thesis, University of Ghent (in Flemish)
Lange-Kornbak D, Karihaloo BL (1998) Design of fiber-reinforced DSP mixes for minimum brittleness. Adv Cem Based Mater 7(3):89–101
Li VC (1992) Postcrack scaling relations for fiber reinforced cementitious composites. J Mater Civ Eng ASCE 4(1):41–57
Brandt AM (1985) On the optimal direction of short metal fibres in brittle matrix composites. J Mater Sci 20(11):3831–3841
Ferrara L, Meda A (2006) Relationships between fibre distribution, workability and the mechanical properties of SFRC applied to precast roof elements. Mater Struct 39(4):411–420
Deutsche Beton Verein (2001) DBV Merkblatt Stahlfaserbeton. Deutscher Beton-Und Bautechnik-Verein
RILEM TC 162-TDF (2003) Test and design methods for steel fibre reinforced concrete—σ–ε design method: final recommendation. Mater Struct 36(262):560–567
CNR-DT 204 (2006) Istruzioni per la Progettazione, l’Esecuzione ed il Controllo di Strutture Fibrorinforzato. Consiglio Nazionale delle Riserche, Italia (in Italian)
CEB-FIP (2010) Model code. Comité Euro-International du Beton-Federation International de la Precontraint, Paris
Comisión permanente del Hormigón (2008) Instrucción del Hormigón Estructural, EHE-08. Anejo 14. Ministerio de Fomento, gobierno de España (in Spanish)
Blanco A, Pujadas P, de la Fuente A, Cavalaro S, Aguado A (2013) Application of constitutive models in European codes to RC–FRC. Constr Build Mater 40:246–259
Robins PJ, Austin SA, Jones PA (2003) Spatial distribution of steel fibres in sprayed and cast concrete. Mag Concr Res 55(3):225–235
Vandewalle L, Heirman G, van Rickstal F (2008) Fibre orientation in self-compacting fibre reinforced concrete. In: Proceedings of the 7th RILEM symposium on fibre reinforced concrete: design and applications (BEFIB 2008), Chennai, p 719–728
Van Gysel A (2000) Studie van het uittrekgedrag van staalvezels ingebed in een cementgebonden matrix met toepassing op staalvezelbeton onderworpen aan buiging. PhD Thesis, Gent University
Molins C, Martinez J, Arnáiz N (2008) Distribución de fibras de acero en probetas prismáticas de hormigón. In: CD-ROM from the 4th international structural concrete congress (ACHE) 2008, Valencia (in Spanish)
Schnell J, Ackermann FP, Rösch R, Sych T (2008) Statistical analysis of the fibre distribution in ultra high performance concrete using computer tomography. In: Proceedings of the second international symposium on UHPC 2008, Kassel, p 145–152
Redon C, Chermant L, Chermant JL, Coster M (1998) Assessment of fibre orientation in reinforced concrete using Fourier image transform. J Microsc 191:258–265
Ozyurt N, Mason TO, Shah SP (2006) Non-destructive monitoring of fiber orientation using AC-IS: an industrial-scale application. Cem Concr Res 36(9):1653–1660
Ozyurt N, Woo LY, Mason TO, Shah SP (2006) Monitoring fiber dispersion in fiber-reinforced cementitious materials: comparison of AC impedance spectroscopy and image analysis. ACI Mater J 103(5):340–347
Torrents JM, Juan-García P, Patau O, Aguado A (2009) Surveillance of steel fibre reinforced concrete slabs measured with an open-ended coaxial probe. In: Proceedings of the XIX IMEKO world congress: fundamental and applied metrology, Lisbon, p 2282–2284. http://www.imeko2009.it.pt/Papers/FP_633.pdf. Accessed 5 Jan 2012
Van Damme S, Franchois A, De Zutter D, Taerwe L (2004) Nondestructive determination of the steel fiber content in concrete slabs with an open-ended coaxial probe. IEEE Trans Geosci Remote Sens 42(11):2511–2521
Lataste JF, Behloul M, Breysse D (2008) Characterisation of fibres distribution in a steel fibre reinforced concrete with electrical resistivity measurements. NDT E Int 41(8):638–647
Barnett SJ, Lataste JF, Parry T, Millard SG, Soutsos MN (2010) Assessment of fibre orientation in ultra high performance fibre reinforced concrete and its effect on flexural strength. Mater Struct 43(7):1009–1023
Faifer M, Ottoboni R, Toscani S, Ferrara L (2010) Steel fiber reinforced concrete characterization based on a magnetic probe. In: Instrumentation and measurement technology conference (I2MTC), IEEE, p 157–62
Faifer M, Ferrara L, Ottoboni R, Toscani S (2013) Low frequency electrical and magnetic methods for non-destructive analysis of fiber dispersion in fiber reinforced cementitious composites: an overview. Sensors 13(1):1300–1318
Torrents JM, Blanco A, Pujadas P, Aguado A, Juan-García P, Sánchez-Moragues MÁ (2012) Inductive method for assessing the amount and orientation of steel fibers in concrete. Mater Struct 45(10):1577–1592
Molins C, Aguado A, Saludes S (2009) Double punch test to control the energy dissipation in tension of FRC (Barcelona test). Mater Struct 42(4):415–425
Pujadas P, Blanco A, Cavalaro S, de la Fuente A, Aguado A (2013) New analytical model to generalize the Barcelona Test using axial displacement. J Civ Eng Manag 19(2):259–271
Laranjeira F, Grünewald S, Walraven J, Blom C, Molins C, Aguado A (2011) Characterization of the orientation profile of steel fiber reinforced concrete. Mater Struct 44(6):1093–1111
Laranjeira F, Aguado A, Molins C, Grünewald S, Walraven J, Cavalaro S (2012) Framework to predict the orientation of fibers in FRC: a novel philosophy. Cem Concr Res 42(6):752–768
Grünewald S (2004) Performance-based design of self-compacting fibre reinforced concrete. PhD Thesis, Delft University of Technology
Schönlin K (1988) Ermittlung der Orientierung, Menge und Verteilung der Fasern in faserbewehrtem Beton. Beton-und Stahlbetonbau 83(6):168–171 (in German)
Laranjeira F (2010) Design-oriented constitutive model for steel fiber reinforced concrete. PhD Thesis, Universitat Politècnica de Catalunya
Dupont D, Vandewalle L (2005) Distribution of steel fibres in rectangular sections. Cem Concr Compos 27(3):391–398
Soroushian P, Lee CD (1990) Distribution and orientation of fibers in steel fiber reinforced concrete. ACI Mater J 87(5):433–439
Kameswara Rao CVS (1979) Effectiveness of random fibres in composites. Cem Concr Res 9(6):685–693
Martinie L, Roussel N (2011) Simple tools for fiber orientation prediction in industrial practice. Cem Concr Res 41(10):993–1000
Acknowledgment
The authors thank the collaboration of Pau Juan during the experimental and theoretical developments included in this work.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cavalaro, S.H.P., López, R., Torrents, J.M. et al. Improved assessment of fibre content and orientation with inductive method in SFRC. Mater Struct 48, 1859–1873 (2015). https://doi.org/10.1617/s11527-014-0279-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1617/s11527-014-0279-6