Improved assessment of fibre content and orientation with inductive method in SFRC

Abstract

The inductive method is a robust and simple non-destructive test to assess the content and the distribution of steel fibres in FRC. Despite the advantages in comparison with other methods, further studies are still needed to define the accuracy, the theoretical basis and the equations for the conversion of the inductance into fibre content and distribution. In fact, although the test provides an indirect estimation of the fibre distribution, currently no equation exists for the assessment of the orientation number, which is a valuable parameter for the design of structures. The objective of the present paper is to address this issue. Initially, the theoretical basis for the calculation of the fibre content is provided. Then, alternative equations are deducted for the fibre contribution and for the orientation number. Different experimental programs and finite element numerical simulations are conducted to evaluate the accuracy of the method and to validate the proposals. The results indicate that the equations currently used may lead to errors of up to 24 %. Instead, the formulation proposed here shows errors far below 2.6 %, allowing the prediction of the orientation number in all directions with a high accuracy. This opens up a new field of application for the test and represents an advance towards the characterization and the quality control of SFRC.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Mobasher B, Stang H, Shah SP (1990) Microcracking in fiber reinforced concrete. Cem Concr Res 20(5):665–676

    Article  Google Scholar 

  2. 2.

    Bentur A (1989) Fiber-reinforced cementitious materials. Mater Sci Concr: 223–285

  3. 3.

    Blanco A (2013) Characterization and modelling of SFRC elements. PhD Thesis, Universitat Politècnica de Catalunya

  4. 4.

    Van Gysel A (2000) Studie van het uittrekgedrag van staalvezels ingebed in een cementgebonden matrix met toepassing op staalvezelbeton onderworpen aan buiging. PhD Thesis, University of Ghent (in Flemish)

  5. 5.

    Lange-Kornbak D, Karihaloo BL (1998) Design of fiber-reinforced DSP mixes for minimum brittleness. Adv Cem Based Mater 7(3):89–101

    Article  Google Scholar 

  6. 6.

    Li VC (1992) Postcrack scaling relations for fiber reinforced cementitious composites. J Mater Civ Eng ASCE 4(1):41–57

    Article  Google Scholar 

  7. 7.

    Brandt AM (1985) On the optimal direction of short metal fibres in brittle matrix composites. J Mater Sci 20(11):3831–3841

    Article  Google Scholar 

  8. 8.

    Ferrara L, Meda A (2006) Relationships between fibre distribution, workability and the mechanical properties of SFRC applied to precast roof elements. Mater Struct 39(4):411–420

    Article  Google Scholar 

  9. 9.

    Deutsche Beton Verein (2001) DBV Merkblatt Stahlfaserbeton. Deutscher Beton-Und Bautechnik-Verein

  10. 10.

    RILEM TC 162-TDF (2003) Test and design methods for steel fibre reinforced concrete—σε design method: final recommendation. Mater Struct 36(262):560–567

    Article  Google Scholar 

  11. 11.

    CNR-DT 204 (2006) Istruzioni per la Progettazione, l’Esecuzione ed il Controllo di Strutture Fibrorinforzato. Consiglio Nazionale delle Riserche, Italia (in Italian)

  12. 12.

    CEB-FIP (2010) Model code. Comité Euro-International du Beton-Federation International de la Precontraint, Paris

    Google Scholar 

  13. 13.

    Comisión permanente del Hormigón (2008) Instrucción del Hormigón Estructural, EHE-08. Anejo 14. Ministerio de Fomento, gobierno de España (in Spanish)

  14. 14.

    Blanco A, Pujadas P, de la Fuente A, Cavalaro S, Aguado A (2013) Application of constitutive models in European codes to RC–FRC. Constr Build Mater 40:246–259

    Article  Google Scholar 

  15. 15.

    Robins PJ, Austin SA, Jones PA (2003) Spatial distribution of steel fibres in sprayed and cast concrete. Mag Concr Res 55(3):225–235

    Article  Google Scholar 

  16. 16.

    Vandewalle L, Heirman G, van Rickstal F (2008) Fibre orientation in self-compacting fibre reinforced concrete. In: Proceedings of the 7th RILEM symposium on fibre reinforced concrete: design and applications (BEFIB 2008), Chennai, p 719–728

  17. 17.

    Van Gysel A (2000) Studie van het uittrekgedrag van staalvezels ingebed in een cementgebonden matrix met toepassing op staalvezelbeton onderworpen aan buiging. PhD Thesis, Gent University

  18. 18.

    Molins C, Martinez J, Arnáiz N (2008) Distribución de fibras de acero en probetas prismáticas de hormigón. In: CD-ROM from the 4th international structural concrete congress (ACHE) 2008, Valencia (in Spanish)

  19. 19.

    Schnell J, Ackermann FP, Rösch R, Sych T (2008) Statistical analysis of the fibre distribution in ultra high performance concrete using computer tomography. In: Proceedings of the second international symposium on UHPC 2008, Kassel, p 145–152

  20. 20.

    Redon C, Chermant L, Chermant JL, Coster M (1998) Assessment of fibre orientation in reinforced concrete using Fourier image transform. J Microsc 191:258–265

    Article  Google Scholar 

  21. 21.

    Ozyurt N, Mason TO, Shah SP (2006) Non-destructive monitoring of fiber orientation using AC-IS: an industrial-scale application. Cem Concr Res 36(9):1653–1660

    Article  Google Scholar 

  22. 22.

    Ozyurt N, Woo LY, Mason TO, Shah SP (2006) Monitoring fiber dispersion in fiber-reinforced cementitious materials: comparison of AC impedance spectroscopy and image analysis. ACI Mater J 103(5):340–347

    Google Scholar 

  23. 23.

    Torrents JM, Juan-García P, Patau O, Aguado A (2009) Surveillance of steel fibre reinforced concrete slabs measured with an open-ended coaxial probe. In: Proceedings of the XIX IMEKO world congress: fundamental and applied metrology, Lisbon, p 2282–2284. http://www.imeko2009.it.pt/Papers/FP_633.pdf. Accessed 5 Jan 2012

  24. 24.

    Van Damme S, Franchois A, De Zutter D, Taerwe L (2004) Nondestructive determination of the steel fiber content in concrete slabs with an open-ended coaxial probe. IEEE Trans Geosci Remote Sens 42(11):2511–2521

    Article  Google Scholar 

  25. 25.

    Lataste JF, Behloul M, Breysse D (2008) Characterisation of fibres distribution in a steel fibre reinforced concrete with electrical resistivity measurements. NDT E Int 41(8):638–647

    Article  Google Scholar 

  26. 26.

    Barnett SJ, Lataste JF, Parry T, Millard SG, Soutsos MN (2010) Assessment of fibre orientation in ultra high performance fibre reinforced concrete and its effect on flexural strength. Mater Struct 43(7):1009–1023

    Article  Google Scholar 

  27. 27.

    Faifer M, Ottoboni R, Toscani S, Ferrara L (2010) Steel fiber reinforced concrete characterization based on a magnetic probe. In: Instrumentation and measurement technology conference (I2MTC), IEEE, p 157–62

  28. 28.

    Faifer M, Ferrara L, Ottoboni R, Toscani S (2013) Low frequency electrical and magnetic methods for non-destructive analysis of fiber dispersion in fiber reinforced cementitious composites: an overview. Sensors 13(1):1300–1318

    Article  Google Scholar 

  29. 29.

    Torrents JM, Blanco A, Pujadas P, Aguado A, Juan-García P, Sánchez-Moragues MÁ (2012) Inductive method for assessing the amount and orientation of steel fibers in concrete. Mater Struct 45(10):1577–1592

    Article  Google Scholar 

  30. 30.

    Molins C, Aguado A, Saludes S (2009) Double punch test to control the energy dissipation in tension of FRC (Barcelona test). Mater Struct 42(4):415–425

    Article  Google Scholar 

  31. 31.

    Pujadas P, Blanco A, Cavalaro S, de la Fuente A, Aguado A (2013) New analytical model to generalize the Barcelona Test using axial displacement. J Civ Eng Manag 19(2):259–271

    Article  Google Scholar 

  32. 32.

    Laranjeira F, Grünewald S, Walraven J, Blom C, Molins C, Aguado A (2011) Characterization of the orientation profile of steel fiber reinforced concrete. Mater Struct 44(6):1093–1111

    Article  Google Scholar 

  33. 33.

    Laranjeira F, Aguado A, Molins C, Grünewald S, Walraven J, Cavalaro S (2012) Framework to predict the orientation of fibers in FRC: a novel philosophy. Cem Concr Res 42(6):752–768

    Article  Google Scholar 

  34. 34.

    Grünewald S (2004) Performance-based design of self-compacting fibre reinforced concrete. PhD Thesis, Delft University of Technology

  35. 35.

    Schönlin K (1988) Ermittlung der Orientierung, Menge und Verteilung der Fasern in faserbewehrtem Beton. Beton-und Stahlbetonbau 83(6):168–171 (in German)

    Article  Google Scholar 

  36. 36.

    Laranjeira F (2010) Design-oriented constitutive model for steel fiber reinforced concrete. PhD Thesis, Universitat Politècnica de Catalunya

  37. 37.

    Dupont D, Vandewalle L (2005) Distribution of steel fibres in rectangular sections. Cem Concr Compos 27(3):391–398

    Article  Google Scholar 

  38. 38.

    Soroushian P, Lee CD (1990) Distribution and orientation of fibers in steel fiber reinforced concrete. ACI Mater J 87(5):433–439

    Google Scholar 

  39. 39.

    Kameswara Rao CVS (1979) Effectiveness of random fibres in composites. Cem Concr Res 9(6):685–693

    Article  Google Scholar 

  40. 40.

    Martinie L, Roussel N (2011) Simple tools for fiber orientation prediction in industrial practice. Cem Concr Res 41(10):993–1000

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank the collaboration of Pau Juan during the experimental and theoretical developments included in this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sergio H. Pialarissi Cavalaro.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cavalaro, S.H.P., López, R., Torrents, J.M. et al. Improved assessment of fibre content and orientation with inductive method in SFRC. Mater Struct 48, 1859–1873 (2015). https://doi.org/10.1617/s11527-014-0279-6

Download citation

Keywords

  • SFRC
  • Inductive method
  • Fibre content
  • Orientation number
  • Quality control