Materials and Structures

, Volume 48, Issue 6, pp 1859–1873 | Cite as

Improved assessment of fibre content and orientation with inductive method in SFRC

  • Sergio H. Pialarissi Cavalaro
  • Rubén López
  • Josep María Torrents
  • Antonio Aguado
Original Article

Abstract

The inductive method is a robust and simple non-destructive test to assess the content and the distribution of steel fibres in FRC. Despite the advantages in comparison with other methods, further studies are still needed to define the accuracy, the theoretical basis and the equations for the conversion of the inductance into fibre content and distribution. In fact, although the test provides an indirect estimation of the fibre distribution, currently no equation exists for the assessment of the orientation number, which is a valuable parameter for the design of structures. The objective of the present paper is to address this issue. Initially, the theoretical basis for the calculation of the fibre content is provided. Then, alternative equations are deducted for the fibre contribution and for the orientation number. Different experimental programs and finite element numerical simulations are conducted to evaluate the accuracy of the method and to validate the proposals. The results indicate that the equations currently used may lead to errors of up to 24 %. Instead, the formulation proposed here shows errors far below 2.6 %, allowing the prediction of the orientation number in all directions with a high accuracy. This opens up a new field of application for the test and represents an advance towards the characterization and the quality control of SFRC.

Keywords

SFRC Inductive method Fibre content Orientation number Quality control 

Notes

Acknowledgment

The authors thank the collaboration of Pau Juan during the experimental and theoretical developments included in this work.

References

  1. 1.
    Mobasher B, Stang H, Shah SP (1990) Microcracking in fiber reinforced concrete. Cem Concr Res 20(5):665–676CrossRefGoogle Scholar
  2. 2.
    Bentur A (1989) Fiber-reinforced cementitious materials. Mater Sci Concr: 223–285Google Scholar
  3. 3.
    Blanco A (2013) Characterization and modelling of SFRC elements. PhD Thesis, Universitat Politècnica de CatalunyaGoogle Scholar
  4. 4.
    Van Gysel A (2000) Studie van het uittrekgedrag van staalvezels ingebed in een cementgebonden matrix met toepassing op staalvezelbeton onderworpen aan buiging. PhD Thesis, University of Ghent (in Flemish)Google Scholar
  5. 5.
    Lange-Kornbak D, Karihaloo BL (1998) Design of fiber-reinforced DSP mixes for minimum brittleness. Adv Cem Based Mater 7(3):89–101CrossRefGoogle Scholar
  6. 6.
    Li VC (1992) Postcrack scaling relations for fiber reinforced cementitious composites. J Mater Civ Eng ASCE 4(1):41–57CrossRefGoogle Scholar
  7. 7.
    Brandt AM (1985) On the optimal direction of short metal fibres in brittle matrix composites. J Mater Sci 20(11):3831–3841CrossRefGoogle Scholar
  8. 8.
    Ferrara L, Meda A (2006) Relationships between fibre distribution, workability and the mechanical properties of SFRC applied to precast roof elements. Mater Struct 39(4):411–420CrossRefGoogle Scholar
  9. 9.
    Deutsche Beton Verein (2001) DBV Merkblatt Stahlfaserbeton. Deutscher Beton-Und Bautechnik-VereinGoogle Scholar
  10. 10.
    RILEM TC 162-TDF (2003) Test and design methods for steel fibre reinforced concrete—σε design method: final recommendation. Mater Struct 36(262):560–567CrossRefGoogle Scholar
  11. 11.
    CNR-DT 204 (2006) Istruzioni per la Progettazione, l’Esecuzione ed il Controllo di Strutture Fibrorinforzato. Consiglio Nazionale delle Riserche, Italia (in Italian)Google Scholar
  12. 12.
    CEB-FIP (2010) Model code. Comité Euro-International du Beton-Federation International de la Precontraint, ParisGoogle Scholar
  13. 13.
    Comisión permanente del Hormigón (2008) Instrucción del Hormigón Estructural, EHE-08. Anejo 14. Ministerio de Fomento, gobierno de España (in Spanish)Google Scholar
  14. 14.
    Blanco A, Pujadas P, de la Fuente A, Cavalaro S, Aguado A (2013) Application of constitutive models in European codes to RC–FRC. Constr Build Mater 40:246–259CrossRefGoogle Scholar
  15. 15.
    Robins PJ, Austin SA, Jones PA (2003) Spatial distribution of steel fibres in sprayed and cast concrete. Mag Concr Res 55(3):225–235CrossRefGoogle Scholar
  16. 16.
    Vandewalle L, Heirman G, van Rickstal F (2008) Fibre orientation in self-compacting fibre reinforced concrete. In: Proceedings of the 7th RILEM symposium on fibre reinforced concrete: design and applications (BEFIB 2008), Chennai, p 719–728Google Scholar
  17. 17.
    Van Gysel A (2000) Studie van het uittrekgedrag van staalvezels ingebed in een cementgebonden matrix met toepassing op staalvezelbeton onderworpen aan buiging. PhD Thesis, Gent UniversityGoogle Scholar
  18. 18.
    Molins C, Martinez J, Arnáiz N (2008) Distribución de fibras de acero en probetas prismáticas de hormigón. In: CD-ROM from the 4th international structural concrete congress (ACHE) 2008, Valencia (in Spanish)Google Scholar
  19. 19.
    Schnell J, Ackermann FP, Rösch R, Sych T (2008) Statistical analysis of the fibre distribution in ultra high performance concrete using computer tomography. In: Proceedings of the second international symposium on UHPC 2008, Kassel, p 145–152Google Scholar
  20. 20.
    Redon C, Chermant L, Chermant JL, Coster M (1998) Assessment of fibre orientation in reinforced concrete using Fourier image transform. J Microsc 191:258–265CrossRefGoogle Scholar
  21. 21.
    Ozyurt N, Mason TO, Shah SP (2006) Non-destructive monitoring of fiber orientation using AC-IS: an industrial-scale application. Cem Concr Res 36(9):1653–1660CrossRefGoogle Scholar
  22. 22.
    Ozyurt N, Woo LY, Mason TO, Shah SP (2006) Monitoring fiber dispersion in fiber-reinforced cementitious materials: comparison of AC impedance spectroscopy and image analysis. ACI Mater J 103(5):340–347Google Scholar
  23. 23.
    Torrents JM, Juan-García P, Patau O, Aguado A (2009) Surveillance of steel fibre reinforced concrete slabs measured with an open-ended coaxial probe. In: Proceedings of the XIX IMEKO world congress: fundamental and applied metrology, Lisbon, p 2282–2284. http://www.imeko2009.it.pt/Papers/FP_633.pdf. Accessed 5 Jan 2012
  24. 24.
    Van Damme S, Franchois A, De Zutter D, Taerwe L (2004) Nondestructive determination of the steel fiber content in concrete slabs with an open-ended coaxial probe. IEEE Trans Geosci Remote Sens 42(11):2511–2521CrossRefGoogle Scholar
  25. 25.
    Lataste JF, Behloul M, Breysse D (2008) Characterisation of fibres distribution in a steel fibre reinforced concrete with electrical resistivity measurements. NDT E Int 41(8):638–647CrossRefGoogle Scholar
  26. 26.
    Barnett SJ, Lataste JF, Parry T, Millard SG, Soutsos MN (2010) Assessment of fibre orientation in ultra high performance fibre reinforced concrete and its effect on flexural strength. Mater Struct 43(7):1009–1023CrossRefGoogle Scholar
  27. 27.
    Faifer M, Ottoboni R, Toscani S, Ferrara L (2010) Steel fiber reinforced concrete characterization based on a magnetic probe. In: Instrumentation and measurement technology conference (I2MTC), IEEE, p 157–62Google Scholar
  28. 28.
    Faifer M, Ferrara L, Ottoboni R, Toscani S (2013) Low frequency electrical and magnetic methods for non-destructive analysis of fiber dispersion in fiber reinforced cementitious composites: an overview. Sensors 13(1):1300–1318CrossRefGoogle Scholar
  29. 29.
    Torrents JM, Blanco A, Pujadas P, Aguado A, Juan-García P, Sánchez-Moragues MÁ (2012) Inductive method for assessing the amount and orientation of steel fibers in concrete. Mater Struct 45(10):1577–1592CrossRefGoogle Scholar
  30. 30.
    Molins C, Aguado A, Saludes S (2009) Double punch test to control the energy dissipation in tension of FRC (Barcelona test). Mater Struct 42(4):415–425CrossRefGoogle Scholar
  31. 31.
    Pujadas P, Blanco A, Cavalaro S, de la Fuente A, Aguado A (2013) New analytical model to generalize the Barcelona Test using axial displacement. J Civ Eng Manag 19(2):259–271CrossRefGoogle Scholar
  32. 32.
    Laranjeira F, Grünewald S, Walraven J, Blom C, Molins C, Aguado A (2011) Characterization of the orientation profile of steel fiber reinforced concrete. Mater Struct 44(6):1093–1111CrossRefGoogle Scholar
  33. 33.
    Laranjeira F, Aguado A, Molins C, Grünewald S, Walraven J, Cavalaro S (2012) Framework to predict the orientation of fibers in FRC: a novel philosophy. Cem Concr Res 42(6):752–768CrossRefGoogle Scholar
  34. 34.
    Grünewald S (2004) Performance-based design of self-compacting fibre reinforced concrete. PhD Thesis, Delft University of TechnologyGoogle Scholar
  35. 35.
    Schönlin K (1988) Ermittlung der Orientierung, Menge und Verteilung der Fasern in faserbewehrtem Beton. Beton-und Stahlbetonbau 83(6):168–171 (in German)CrossRefGoogle Scholar
  36. 36.
    Laranjeira F (2010) Design-oriented constitutive model for steel fiber reinforced concrete. PhD Thesis, Universitat Politècnica de CatalunyaGoogle Scholar
  37. 37.
    Dupont D, Vandewalle L (2005) Distribution of steel fibres in rectangular sections. Cem Concr Compos 27(3):391–398CrossRefGoogle Scholar
  38. 38.
    Soroushian P, Lee CD (1990) Distribution and orientation of fibers in steel fiber reinforced concrete. ACI Mater J 87(5):433–439Google Scholar
  39. 39.
    Kameswara Rao CVS (1979) Effectiveness of random fibres in composites. Cem Concr Res 9(6):685–693CrossRefGoogle Scholar
  40. 40.
    Martinie L, Roussel N (2011) Simple tools for fiber orientation prediction in industrial practice. Cem Concr Res 41(10):993–1000CrossRefGoogle Scholar

Copyright information

© RILEM 2014

Authors and Affiliations

  • Sergio H. Pialarissi Cavalaro
    • 1
  • Rubén López
    • 1
  • Josep María Torrents
    • 2
  • Antonio Aguado
    • 1
  1. 1.Departamento de Ingeniería de la Construcción, ETSECCPBUniversidad Politécnica de Cataluña, BarcelonaTechBarcelonaSpain
  2. 2.Departamento de Ingeniería Electrónica, EELUniversidad Politécnica de Cataluña, BarcelonaTech,BarcelonaSpain

Personalised recommendations