Skip to main content
Log in

Determination of the consolidation coefficient of low compressibility materials: application to fresh cement-based materials

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This paper focuses on the determination of the consolidation characteristics of mineral materials. The main objectives were to improve measurement accuracy and to reduce test duration. Consolidation characteristics govern fluid migration and the evolution of the properties; compressibility, permeability and consolidation coefficient are required to describe hydro-mechanical behaviour. In this paper, a method of consolidation coefficient determination is proposed. After the measurement of compressibility and permeability, the evolution of the consolidation coefficient as a function of void ratio was computed. The method was applied to two different mineral materials: a clay material (kaolin paste) and a fresh cement paste. The results obtained were compared with commonly used methods described in national standards; comparison showed that the developed procedure is quicker and provides more reliable results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Assaad JJ, Harb J (2011) Surface settlement of cementitious-based materials determined by oedometer testing. Mater Struct 44:845–856

    Article  Google Scholar 

  2. ASTM Standard D2435 (2004) Standard test method for one dimensional consolidation properties of soils

  3. Andersen NPR, Christensen ML, Keiding K (2004) New approach to determining consolidation coefficients using cake-filtration experiments. Powder Technol 142:98–102

    Article  Google Scholar 

  4. Atkinson J (1993) An introduction to the mechanics of soil and foundations: through critical state soil mechanics. McGraw-Hill Book Company, London

    Google Scholar 

  5. Atkinson J, Davison LR (1990) Continuous loading oedometer test. Q J Eng Geol 23:347–355

    Article  Google Scholar 

  6. Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–164

    Article  MATH  Google Scholar 

  7. Carman PC (1939) Permeability of saturated sands, soils and clays. J Agric Sci 29:263–273

    Article  Google Scholar 

  8. Casagrande A (1936) The determination of the preconsolidation load and its practical significance, In Proc 1st Intl Conf Soil Mech Found Eng, Cambridge, p 60–64

  9. Das BM (2008) Advanced soil mechanics, 3rd edn. Taylor and Francis, New York

    Google Scholar 

  10. Giaccio G, Giovambattista A (1986) Bleeding: evaluation of its effects on concrete behaviour. Mater Struct 19:265–271

    Article  Google Scholar 

  11. Hoang VH, Mélinge Y, Perrot A and Rangeard D (2010) Local properties of clay based materials under tribological testing, in Proc WCPT6, Nuremberg

  12. Josserand L, de Larrard F (2004) A method for concrete bleeding measurement. Mater Struct 37:666–670

    Article  Google Scholar 

  13. Josserand L, Coussy O, De Larrard F (2006) Bleeding of concrete as an ageing consolidation process. Cem Concr Res 36(9):1603–1608

    Article  Google Scholar 

  14. Khayat KH (1998) Viscosity-enhancing admixtures for cement-based materials—an overview. Cement Concr Compos 20(2–3):171–188

    Article  Google Scholar 

  15. Leroueil S (1996) Compressibility of clays: fundamental and practical aspects. J Geotech Eng 122(GT7):534–543

    Article  Google Scholar 

  16. Leroueil S (1988) Recent developments in consolidation of natural clays. Can Geotech J 25:85–107

    Article  Google Scholar 

  17. Leroueil S, Le Bihan JP, Tavenas F (1980) An approach for the determination of preconsolidation pressure in sensitive clays. Can Geotech J 17:446–453

    Article  Google Scholar 

  18. Martin PJ, Wilson DI, Bonnett PE (2006) Paste extrusion through non-axisymmetric geometries: insights gained by application of a liquid phase drainage criterion. Powder Technol 168:64–73

    Article  Google Scholar 

  19. Miltiadou-Fezans A, Tassios TP (2013) Stability of hydraulic grouts for masonry strengthening. Mater Struct 46:1631–1652

    Article  Google Scholar 

  20. Mikanovic N, Jolicoeur C (2008) Influence of superplasticizers on the rheology and stability of limestone and cement pastes. Cem Concr Res 38(7):907–919

    Article  Google Scholar 

  21. Morris PH, Dux PF (2010) Analytical solutions for bleeding of concrete due to consolidation. Cem Concr Res 40(10):1531–1540

    Article  Google Scholar 

  22. Nova R (2005) Fondements de la mécanique des sols. Hermes science publications, Lavoisier

    Google Scholar 

  23. Olson RE (1986) State of the art: consolidation testing. In: Yong RN, Townsend FC (eds) Consolidation of soils, testing and evaluation, ASTMSTP892. ASTM, West Conshohocken, pp 7–70

  24. Patel MJ, Wedderburn J, Blackburn S, Wilson DI (2009) Maldistribution of fluids in extrudates. J Eur Ceram Soc 29:937–941

    Article  Google Scholar 

  25. Perrot A, Rangeard D, Mélinge Y, Estellé P, Lanos C (2009) Extrusion criterion for firm cement-based materials. Appl Rheol 19(5):53042–53051

    Google Scholar 

  26. Perrot A, Lanos C, Mélinge Y, Estellé P (2007) Mortar physical properties evolution in extrusion flow. Rheol Acta 46:1065–1073

    Article  Google Scholar 

  27. Perrot A, Lecompte T, Khelifi H, Brumaud C, Hot J, Roussel N (2012) Yield stress and bleeding of fresh cement pastes. Cem Concr Res 42:937–944

    Article  Google Scholar 

  28. Picandet V, Rangeard D, Perrot A, Lecompte T (2011) Permeability measurement of fresh cement pastes. Cem Concr Res 41(3):330–338

    Article  Google Scholar 

  29. Perrot A, Rangeard D, Picandet V, Mélinge Y (2013) Hydro-mechanical properties of fresh cement pastes containing polycarboxylate superplasticizer. Cement Concrete Res 53:221–228

    Article  Google Scholar 

  30. Poon CS, Kou SC, Lam L (2007) Influence of recycled aggregate on slump and bleeding of fresh concrete. Mater Struct 40(9):981–988

    Article  Google Scholar 

  31. Robinson RG, Allam MM (1998) Effect of clay mineralogy on coefficient of consolidation. Clays and clay materials, vol 46., pp 596–600

    Google Scholar 

  32. Roscoe KH, Burland JB (1968) On the generalised strain–stress behaviour of ‘wet’ clay, engineering plasticity. Cambridge University Press, Cambridge, pp 535–609

    Google Scholar 

  33. Rosquoët F, Alexis A, Khelidj A, Phelipot A (2003) Experimental study of cement grout: rheological behavior and sedimentation. Cem Concr Res 33(5):713–722

    Article  Google Scholar 

  34. Shukla SK, Sivakugan N, Das BM (2009) Methods for determination of the coefficient of consolidation and field observations of time rate of settlement—an overview. Int J Geot Eng 3:89–108

    Article  Google Scholar 

  35. Smith RE, Wahls HE (1969) Consolidation under constant rate of strain. J Soil Mech Found Div Am Soc Civ Eng 95(SM2):519–538

    Google Scholar 

  36. Terzaghi K, Peck RB, Mesri G (1996) Soil mechanics in engineering practice, 3rd edn. Wiley, New York

    Google Scholar 

  37. Tavenas F, Burcy M, Magnan J.-P, La Rochelle P and Roy M (1987) Analyse critique de la théorie de la consolidation unidimensionnelle de Terzaghi, Revue Francaise de Géotechnique, 7

  38. Tavenas F, Leblond P, Jean P, Leroueil S (1993) The permeability of natural soft clays. Part I: methods of laboratory measurement. Can Geotech J 20(4):629–644

    Article  Google Scholar 

  39. Tavenas F, Leblond P, Jean P, Leroueil S (1993) The permeability of natural soft clay. Part II: permeability characteristics. Can Geotech J 20(4):645–660

    Article  Google Scholar 

  40. Taylor DW (1948) Fundamentals of soil mechanics. Wiley, New York

    Google Scholar 

  41. Terzaghi K (1943) Theoretical Soil Mechanics. John Wiley and Sons, New York

    Book  Google Scholar 

  42. Toutou Z (2002) Rhéologie et formulation des géosuspensions concentrées: évaluation des conditions d’extrudabilité, PhD Thesis INSA Rennes

  43. Wainwright PJ, Ait-Aider H (1995) The influence of cement source and slag additions on the bleeding of concrete. Cem Concr Res 25(7):1445–1456

    Article  Google Scholar 

  44. Yim JY, Kim JH, Kwak HY, Kim JK (2013) Evaluation of internal bleeding in concrete using a self-weight bleeding test. Cem Concr Res 53:18–24

    Article  Google Scholar 

  45. French Standard 2005 XP CEN ISO/TS 17892-5, 2005, Reconnaissance et essais géotechniques—Essais de laboratoire sur les sols—Partie 5: essai de chargement par paliers à l’oedomètre

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Rangeard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rangeard, D., Perrot, A., Picandet, V. et al. Determination of the consolidation coefficient of low compressibility materials: application to fresh cement-based materials. Mater Struct 48, 1475–1483 (2015). https://doi.org/10.1617/s11527-014-0247-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0247-1

Keywords

Navigation