Materials and Structures

, Volume 48, Issue 4, pp 947–957 | Cite as

Fiber orientation during casting of UHPFRC: electrical resistivity measurements, image analysis and numerical simulations

  • Laetitia Martinie
  • Jean-François Lataste
  • Nicolas Roussel
Original Article

Abstract

Fibers are added to cementitious materials to enhance their mechanical behavior in hardened state. This reinforcement is strongly influenced by the fiber preferred orientation induced by casting flow. In this paper, a model derived from the evolution of a single rigid fiber orientation in a Newtonian medium is proposed to numerically predict fiber orientation in a cementitious structure in hardened state. The main characteristics of fiber orientation during a pouring representative of industrial castings are detailed. Experimental measurements taken on the same reference casting confirm this hardened state orientation.

Keywords

Fibers Orientation Cementitious materials Predictions Simulations Electrical resistivities 

References

  1. 1.
    Rossi P (1992) Mechanical behavior of metal fiber reinforced concretes. Cem Concr Compos 14(1):3–16CrossRefGoogle Scholar
  2. 2.
    Rossi P (1994) Steel fiber reinforced concrete (sfrc): an example of french research. ACI Mater J 91(3):273–279Google Scholar
  3. 3.
    Rossi P, Acker P, Malier Y (1987) Effect of steel fibers at two different stages: the material and the structure. Mater Struct 20(120):436–439CrossRefGoogle Scholar
  4. 4.
    Li VC, Leung CKY (1992) Tensile failure modes of random discontinuous fiber reinforced brittle matrix composites. J Eng Mech ASCE 118(11):2246–2264CrossRefGoogle Scholar
  5. 5.
    Li VC, Wu HC (1992) Micromechanics based design for pseudo strain-hardening in cementitious composites. In: Lutes LD, Niedzwecki JM (eds) 9th ASCE engineering mechanics conference, Reston, pp 740–743Google Scholar
  6. 6.
    Rossi P (2000) Ultra-high performance fibre reinforced concretes (uhpfrc): an overview. In: Rossi P, Chanvillard G (eds) Fifth RILEM symposium on fiber-reinforced concrete (FRC)—RILEM proceedings, vol 15, pp 87–100Google Scholar
  7. 7.
    Naaman AE (1992) Tailored properties for structural performance. In: Reinhardt HW, Naaman AE (eds) High performance fiber reinforced cement composites—RILEM proceedings, vol 15, E and FN Spon, London, pp 18–38Google Scholar
  8. 8.
    Rossi P, Acker P, Malier Y (1987) Effect of steel fibers at two different stages: the material and the structure. Mater Struct 20(120):436–439CrossRefGoogle Scholar
  9. 9.
    Rossi P, Arca A, Parant E, Fakhri P (2005) Bending and compressive behaviors of a new cement composite. Cem Concr Res 35(1):27–33CrossRefGoogle Scholar
  10. 10.
    Maalej M, Hashida T, Li VC (1995) Effect of fiber volume fraction on the offcrack-plane fracture energy in strain-hardening engineered cementitious composites. J Am Ceram Soc 78(12):3369–3375CrossRefGoogle Scholar
  11. 11.
    Li VC, Wu HC, Chan YW (1995) Interfacial property tailoring for pseudo trainhardening cementitious composites. In: Carpinteri, Sih (eds) Advanced technology on design and fabrication of composite, materials and structures. Kluwer, Dordrecht, pp 261–268Google Scholar
  12. 12.
    Leung CKY (1996) Design criteria for pseudoductile fiber-reinforced composites. J Eng Mech ASCE 122(1):10–18CrossRefGoogle Scholar
  13. 13.
    Leung CKY, Shapiro N (1999) Optimal steel fiber strength for reinforcement of cementitious materials. J Mater Civ Eng 11(2):116–123CrossRefGoogle Scholar
  14. 14.
    Ouyang C, Pacios A, Shah SP (1994) Pull out of inclined fibers from cementitious matrix. J Eng Mech 120(12):2641–2659CrossRefGoogle Scholar
  15. 15.
    Imam MA (1995) Shear-moment interaction of steel fibre high strength concrete. PhD Thesis, Catholic University of Leuven, BelgiumGoogle Scholar
  16. 16.
    Campione G, Mindess S (1999) Fibres as shear reinforcement for high strength reinforced concrete beams containing stirrups. In: Proceedings of the IIIrd international workshop on high performance fiber reinforced cementitious composites (HPFRCC3), Mainz, pp 519–530Google Scholar
  17. 17.
    Rossi P (2000) Ultra-high performance fibre reinforced concretes (uhpfrc): an overview. In: Rossi P, Chanvillard G (eds) Fifth RILEM symposium on fiber-reinforced concrete (FRC)—RILEM proceedings, vol 15, pp 87–100Google Scholar
  18. 18.
    Rossi P (2005) Development of new cement composite materials for construction. In: Proceedings of the institution of mechanical engineer part L—Journal of Materials-Design and Applications, vol 219 of L1, pp 67–74Google Scholar
  19. 19.
    Martinie L, Rossi P, Roussel N (2010) Rheology of fiber reinforced cementitious materials: classification and prediction. Cem Concr Res 40:226–234CrossRefGoogle Scholar
  20. 20.
    Laranjeira F, Aguado A, Molins C (2010) Predicting the pullout response of inclined steel fibers, straight fibers. Mater Struct 43:875–895Google Scholar
  21. 21.
    Markovi I (2006) High-performance hybrid-fiber concrete: development and utilization. PhD Thesis, Delft University of Technology, Pays-BasGoogle Scholar
  22. 22.
    Chanvillard G (1993) Analyse expérimentale et modélisation micromécanique du comportement des fibres d’acier tréfilées, ancrées dans une matrice cimentaire. PhD Thesis, LCPC, FranceGoogle Scholar
  23. 23.
    Morton J, Groves GW (1974) The cracking of composites consisting of discontinuous ductile fibers in a brittle matrix: effect of orientation. J Mater Sci 9:1436–1445CrossRefGoogle Scholar
  24. 24.
    Swamy RN (1975) Fibre reinforcement of cement and concrete. Mater Struct 8(45):235–254Google Scholar
  25. 25.
    Martinie L, Roussel N (2011) Simple tools for fiber orientation prediction in industrial practice. Cem Concr Res 41:993–1000CrossRefGoogle Scholar
  26. 26.
    Kooiman AG (2000) Modelling steel fiber reinforced concrete for structural design. PhD Thesis, Delft University of Technology, the NetherlandsGoogle Scholar
  27. 27.
    Boulekbache B, Hamrat M, Chemrouk M, Amziane S (2009). Influence de la rhéologie des bétons renforcés de fibres métalliques sur leurs propriétés mécaniques. Eur J Environ Civil Eng 13(4):473–488Google Scholar
  28. 28.
    Ozyurt N, Mason TO, Shah SP (2006) Non-destructive monitoring of fiber orientation using AC-IS: an industrial-scale application. Cem Concr Res 36:1653–1660CrossRefGoogle Scholar
  29. 29.
    Lataste JF, Belhoul M, Breysse D (2008) Characterisation of fibers distribution in a steel fiber reinforced concrete with electrical resistivity measurements. NDT&E Int 41:638–647CrossRefGoogle Scholar
  30. 30.
    Barnett SJ, Lataste JF, Parry T, Millard SG, Soutsos MN (2009) Assessment of fiber orientation in ultra-high performance fiber reinforced concrete and its effect on flexural strength. Mater Struct 43(7):1009–1023CrossRefGoogle Scholar
  31. 31.
    Folgar F, Tucker CF (1984) Orientation behavior of fibers in concentrated suspensions. J Reinf Plast Compos 3:98–119CrossRefGoogle Scholar
  32. 32.
    Rahnama M, Koch DL, Shaqfeh ESG (1995) The effect of hydrodynamic interactions on the orientation distribution in a fiber suspension subject to simple shear flow. Phys Fluids 7(3):487–506CrossRefMATHGoogle Scholar
  33. 33.
    Petrich MP, Koch DL, Cohen C (2000) An experimental determination of the stressmicrostructure relationship in semi-concentrated fiber suspensions. J Non-Newton Fluid Mech 95:101–133CrossRefGoogle Scholar
  34. 34.
    Dinh SM, Armstrong RC (1984) A rheological equation of state for semi-concentrated fiber suspensions. J Rheol 28(3):207–227CrossRefMATHGoogle Scholar
  35. 35.
    Koch DL, Shaqfeh ESG (1990) The average rotation rate of a fiber in a linear flow of a semi-dilute suspension. Phys Fluids A 2:2093–2102CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Roussel N (2006) Correlation between yield stress and slump: comparison between numerical simulations and concrete rheometer results. Mater Struct 39(4):501–509CrossRefGoogle Scholar
  37. 37.
    Roussel N, Stefani C, Le Roy R (2005) From mini cone test to Abrams cone test: measurement of cement based materials yield stress using slump tests. Cem Concr Res 35(5):817–822CrossRefGoogle Scholar
  38. 38.
    Roussel N, Coussot P (2005) Fifty-cent rheometer for yield stress measurements: from slump to spreading flow. J Rheol 49(3):705–718CrossRefGoogle Scholar
  39. 39.
    Edwards LS (1977) A modified pseudosection for resistivity and IP. Geophysics 42(5):1020–1036CrossRefGoogle Scholar
  40. 40.
    Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics. Cambridge University Press, Cambridge, p 770, ISBN 0-521-32693-1Google Scholar
  41. 41.
    Lataste JF, Sirieix C, Breysse D, Frappa M (2003) Improvement of electrical resistivity measurement for non destructive evaluation of concrete structures. In: Naus DJ (ed) 2nd International RILEM workshop on life prediction and aging management of concrete structures, pp 93–102Google Scholar
  42. 42.
    Dupont D, Vandewalle L (2005) Distribution of steel fibers in rectangular sections. Cem Concr Compos 27:391–398CrossRefGoogle Scholar
  43. 43.
    Robins PJ, Austin SA, Jones PA (2003) Spatial distribution of steel fibers in sprayed and cast concrete. Mag Concr Res 55(3):225–235CrossRefGoogle Scholar
  44. 44.
    Ferrara L, Meda A (2006) Relationship between fiber distribution, workability and the mechanical properties of sfrc applied to precast roof elements. Mater Struct 39:411–420CrossRefGoogle Scholar
  45. 45.
    Vincent M (1984) Etude de l’orientation des fibres de verre courtes lors de la mise en uvre de thermoplastiques chargées. PhD Thesis, Ecole Nationale Suprieure des Mines de Paris, ParisGoogle Scholar
  46. 46.
    Jeffery GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. In: Proceedings of the Royal Society of London; philosophical transactions of the royal society, Royal Society of London, pp 161–179Google Scholar
  47. 47.
    Sepehr M, Ausias G, Carreau PJ (2004) Rheological properties of short fiber filled polypropylene in transient shear flow. J Non-Newton Fluid Mech 123:19–32CrossRefMATHGoogle Scholar
  48. 48.
    Chiba K, Nakamura K (1998) Numerical solution of fiber suspension flow through a complex channel. J Non-Newton Fluid Mech 78:167–185CrossRefMATHGoogle Scholar
  49. 49.
    Poitou A, Chinesta F, Torres R (2000) Numerical simulation of the steady recirculating flows of fiber suspensions. J Non-Newton Fluid Mech 90:65–80CrossRefMATHGoogle Scholar
  50. 50.
    Reddy BD, Mitchell GP (2001) Finite element analysis of fiber suspension flows. Comput Methods Appl Mech Eng 190:2349–2367CrossRefMATHGoogle Scholar
  51. 51.
    Han KH, Im YT (2002) Numerical simulation of three-dimensional fiber orientation in short-fiber-reinforced injection-molded parts. J Mater Process Technol 124:366–371CrossRefGoogle Scholar
  52. 52.
    Chung DH, Kwon TH (2002) Numerical studies of fiber suspensions in axisymmetric radial diverging flow: the effects of modeling and numerical assumptions. J Non-Newton Fluid Mech 107:67–96CrossRefMATHGoogle Scholar
  53. 53.
    Ramazani A, Ait-Kadi A, Grmela M (1997) Rheological modelling of short fiber thermoplastic composites. J Non-Newton Fluid Mech 73:241–260CrossRefGoogle Scholar
  54. 54.
    Ranganathan S, Advani SG (1993) A simultaneous solution for flow and fiber orientation in axisymmetric diverging radial flow. J Non-Newton Fluid Mech 47:107–136CrossRefMATHGoogle Scholar
  55. 55.
    Martinie L (2010) Comportement rhologique et mise en uvre des matriaux cimentaires renforcs en fibres. PhD Thesis, Laboratoire Central des Ponts et Chaussées, Paris, FranceGoogle Scholar
  56. 56.
    Aveston J, Kelly A (1973) Theory of multiple fracture of fibrous composites. J Mater Sci 8:352–362CrossRefGoogle Scholar
  57. 57.
    Stroeven P (1978) Morphometry of fiber reinforced cementitious materials—part I—efficiency and spacing in idealized structures. Mater Struct 11(61):31–38Google Scholar
  58. 58.
    Ausias G, Fan XJ, Tanner RI (2006) Direct simulation for concentrated fiber suspensions in transient and steady state shear flows. J Non-Newton Fluid Mech 135:46–57CrossRefMATHGoogle Scholar
  59. 59.
    Advani SG, Tucker CL (1987) The use of tensors to describe and predict fiber orientation in short fiber composites. J Rheol 31(8):751–784CrossRefGoogle Scholar
  60. 60.
    Latz A, Strautins U, Niedziela D (2010) Comparative numerical study of two concentrated fiber suspension models. J Non-Newton Fluid Mech 165:764–781CrossRefMATHGoogle Scholar
  61. 61.
    Ferec J, Heniche M, Heuzey MC, Ausias G, Carreau PJ (2008) Numerical solution of the fokker-planck equation for fiber suspensions: application to the Folgar–Lipscomb model. J Non-Newton Fluid Mech 155:20–29CrossRefMATHGoogle Scholar
  62. 62.
    Edwards SF, Doi M (1986) The theory of polymer dynamics, vol 26. Oxford Science Publications, New YorkGoogle Scholar
  63. 63.
    Phan-Thien N, Fan X-J, Tanner RI, Zheng R (2002) Flogar-tucker constant for a fiber suspension in a Newtonian fluid. J Non-Newton Fluid Mech 103:251–260CrossRefMATHGoogle Scholar
  64. 64.
    Lipscomb GG, Denn MM (1988) The flow of fiber suspensions in complex geometries. J Non-Newton Fluid Mech 26:297–325CrossRefGoogle Scholar
  65. 65.
    Sunadararjakumar RR, Koch DL (1997) Structure and properties of sheared fiber suspensions with mechanical contacts. J Non-Newton Fluid Mech 73:205–239CrossRefGoogle Scholar
  66. 66.
    Chiba K, Yasuda K, Nakamura K (2001) Numerical solution of fiber suspension flow through a parallel plate channel by coupling flow field with fiber orientation distribution. J Non-Newton Fluid Mech 99:145–157CrossRefMATHGoogle Scholar

Copyright information

© RILEM 2013

Authors and Affiliations

  • Laetitia Martinie
    • 1
  • Jean-François Lataste
    • 2
  • Nicolas Roussel
    • 3
  1. 1.LaMCoS-UMR 5259, INSA LyonVilleurbanneFrance
  2. 2.I2M-UMR CNRS 5295, Université Bordeaux 1TalenceFrance
  3. 3.IFSTTARMarne la ValléeFrance

Personalised recommendations