Materials and Structures

, Volume 47, Issue 6, pp 1011–1023

Dispersion of CaCO3 nanoparticles by sonication and surfactant treatment for application in fly ash–cement systems

  • Shiho Kawashima
  • Jung-Woo Ted Seo
  • David Corr
  • Mark C. Hersam
  • Surendra P. Shah
Original Article


This research aims to offset the negative effects of fly ash on the early-age properties of cementitious materials with the use of calcium carbonate (CaCO3) nanoparticles. The main focus is to enhance the effect of the nanoparticles by improving dispersion through ultrasonication and use of surfactants. CaCO3 aqueous suspensions with various surfactant types and concentrations are prepared and subjected to different sonication protocols (varying duration and amplitude). Dispersion and stability are quantitatively measured by comparing their absorbance spectra through spectrophotometry and qualitatively evaluated through SEM imaging. The effectiveness of sonicated CaCO3 nanoparticle additions in accelerating setting and improving early-age compressive strength gain of fly ash–cement pastes is investigated. The sonication protocol is optimized and the most effective dispersion is achieved with polycarboxylate-based superplasticizer. Good agreement is found between the dispersion measurements and mechanical performance.


Calcium carbonate Nanoparticles Dispersion Sonication Fly ash Cement and Concrete 


  1. 1.
    Antaris AL, Seo J-WT, Green AA, Hersam MC (2010) Sorting single-walled carbon nanotubes by electronic type using nonionic, biocompatible block copolymers. ACS Nano 4(8):4725–4732CrossRefGoogle Scholar
  2. 2.
    Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nano 1(1):60–65CrossRefGoogle Scholar
  3. 3.
    Backfolk K, Lagerge S, Rosenholm JB (2002) The influence of stabilizing agents on the interaction between styrene/butadiene latex and calcium carbonate: a calorimetric and a dynamic electrokinetic study. J Colloid Interface Sci 254(1):8–16CrossRefGoogle Scholar
  4. 4.
    Bagheri A, Parhizkar T, Madani H, Raisghasemi AM (2012) The influence of different preparation methods on the aggregation status of pyrogenic nanosilicas used in concrete. Mater Struct 46(1–2):135–143Google Scholar
  5. 5.
    Bentz DP, Sato T, de la Varga I, Weiss WJ (2012) Fine limestone additions to regulate setting in high volume fly ash mixtures. Cem Concr Compos 34(1):11–17CrossRefGoogle Scholar
  6. 6.
    Bjornstrom J, Chandra S (2003) Effect of superplasticizers on the rheological properties of cements. Mater Struct/Materiaux et Constructions 36(264):685–692CrossRefGoogle Scholar
  7. 7.
    Bonavetti VL, Rahhal VF, Irassar EF (2001) Studies on the carboaluminate formation in limestone filler-blended cements. Cem Concr Res 31(6):853–859CrossRefGoogle Scholar
  8. 8.
    Camiletti J, Soliman AM, Nehdi ML (2012) Effects of nano- and micro-limestone addition on early-age properties of ultra-high-performance concrete. Mater Struct 46(6):881–898CrossRefGoogle Scholar
  9. 9.
    Chandra S, Bjornstrom J (2002) Influence of cement and superplasticizers type and dosage on the fluidity of cement mortars: Part I. Cem Concr Res 32(10):1605–1611CrossRefGoogle Scholar
  10. 10.
    Chandra S, Bjornstrom J (2002) Influence of superplasticizer type and dosage on the slump loss of Portland cement mortars: Part II. Cem Concr Res 32(10):1613–1619CrossRefGoogle Scholar
  11. 11.
    Chen J, He T, Wu W, Cao D, Yun J, Tan CK (2004) Adsorption of sodium salt of poly(acrylic) acid (PAANa) on nano-sized CaCO3 and dispersion of nano-sized CaCO3 in water. Colloids Surf A 232(2–3):163–168CrossRefGoogle Scholar
  12. 12.
    Ferrari L, Kaufmann J, Winnefeld F, Plank J (2010) Interaction of cement model systems with superplasticizers investigated by atomic force microscopy, zeta potential, and adsorption measurements. J Colloid Interface Sci 347(1):15–24CrossRefGoogle Scholar
  13. 13.
    Ferrari L, Kaufmann J, Winnefeld F, Plank J (2011) Multi-method approach to study influence of superplasticizers on cement suspensions. Cem Concr Res 41(10):1058–1066CrossRefGoogle Scholar
  14. 14.
    Fu D, Wu S, He X, Ni J (2008) Preparation and property analysis of polyacrylate dispersant for calcium carbonate. Colloids Surf A 326(3):122–128CrossRefGoogle Scholar
  15. 15.
    Ghrici M, Kenai S, Said-Mansour M (2007) Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements. Cem Concr Compos 29(7):542–549CrossRefGoogle Scholar
  16. 16.
    Giraudeau C, D’Espinose De Lacaillerie J-B, Souguir Z, Nonat A, Flatt RJ (2009) Surface and intercalation chemistry of polycarboxylate copolymers in cementitious systems. J Am Ceram Soc 92(11):2471–2488CrossRefGoogle Scholar
  17. 17.
    Green AA, Hersam MC (2011) Nearly single-chirality single-walled carbon nanotubes produced via orthogonal iterative density gradient ultracentrifugation. Adv Mater 23(19):2185–2190CrossRefGoogle Scholar
  18. 18.
    Green AA, Hersam MC (2009) Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett 9(12):4031–4036CrossRefGoogle Scholar
  19. 19.
    Greenwood R, Rowson N, Kingman S, Brown G (2002) A new method for determining the optimum dispersant concentration in aqueous grinding. Powder Technol 123(2–3):199–207CrossRefGoogle Scholar
  20. 20.
    Gurney L, Bentz DP, Sato T, Weiss WJ (2012) Using limestone to reduce set retardation in high volume fly ash mixtures: improving constructability for sustainability. Transp Res Rec 2290:139–146CrossRefGoogle Scholar
  21. 21.
    Hanehara S, Yamada K (1999) Interaction between cement and chemical admixture from the point of cement hydration, absorption behaviour of admixture, and paste rheology. Cem Concr Res 29(8):1159–1165CrossRefGoogle Scholar
  22. 22.
    Heikal M, El-Didamony H, Morsy MS (2000) Limestone-filled pozzolanic cement. Cem Concr Res 30(11):1827–1834CrossRefGoogle Scholar
  23. 23.
    Hou P, Wang K, Qian J, Kawashima S, Kong D, Shah SP (2012) Effects of colloidal nanoSiO2 on fly ash hydration. Cem Concr Compos 34(10):1095–1103CrossRefGoogle Scholar
  24. 24.
    Irassar EF, González M, Rahhal V (2000) Sulphate resistance of type V cements with limestone filler and natural pozzolana. Cem Concr Compos 22(5):361–368CrossRefGoogle Scholar
  25. 25.
    Ivanova NI, Shchukin ED (1993) Mixed adsorption of ionic and non-ionic surfactants on calcium carbonate. Colloids Surf A 76:109–113CrossRefGoogle Scholar
  26. 26.
    Ji T (2005) Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2. Cem Concr Res 35(10):1943–1947CrossRefGoogle Scholar
  27. 27.
    Kawashima S (2012). Nanomodification of cementitious materials: Fresh state and early age. PhD Dissertation, Northwestern University, Evanston, IL: ProQuest/UMI, 2013, 196 pages (Publication No. AAT 3556618)Google Scholar
  28. 28.
    Kawashima S, Hou P, Corr DJ, Shah SP (2013) Modification of cement-based materials with nanoparticles. Cem Concr Compos 35:8–15CrossRefGoogle Scholar
  29. 29.
    Kakali G, Tsivilis S, Aggeli E, Bati M (2000) Hydration products of C3A, C3S and Portland cement in the presence of CaCO3. Cem Concr Res 30(7):1073–1077CrossRefGoogle Scholar
  30. 30.
    Kim JH, Noemi N, Shah SP (2012) Effect of powder materials on the rheology and formwork pressure of self-consolidating concrete. Cem Concr Compos 34(6):746–753CrossRefGoogle Scholar
  31. 31.
    Kirby GH, Lewis JA (2004) Comb polymer architecture effects on the rheological property evolution of concentrated cement suspensions. J Am Ceram Soc 87(9):1643–1652CrossRefGoogle Scholar
  32. 32.
    Kusters KA, Pratsinis SE, Thoma SG, Smith DM (1993) Ultrasonic fragmentation of agglomerate powders. Chem Eng Sci 48(24):4119–4127CrossRefGoogle Scholar
  33. 33.
    Li C-Z, Feng N-Q, Li Y-D, Chen R-J (2005) Effects of polyethlene oxide chains on the performance of polycarboxylate-type water-reducers. Cem Concr Res 35(5):867–873CrossRefGoogle Scholar
  34. 34.
    Lothenbach B, Le Saout G, Gallucci E, Scrivener K (2008) Influence of limestone on the hydration of Portland cements. Cem Concr Res 38(6):848–860CrossRefGoogle Scholar
  35. 35.
    Mailvaganam NP, Rixom MR (1999) Chemical admixtures for concrete, 3rd edn. CRC Press, Boca RatonGoogle Scholar
  36. 36.
    Makar J (2011) The effect of SWCNT and other nanomaterials on cement hydration and reinforcement. In: Gopalakrishnan K, Birgisson B, Taylor P, Attoh-Okine N (eds) Nanotechnology in civil infrastructure. Springer, Berlin, pp 103–130CrossRefGoogle Scholar
  37. 37.
    Mandzy N, Grulke E, Druffel T (2005) Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technol 160(2):121–126CrossRefGoogle Scholar
  38. 38.
    Nyström R, Backfolk K, Rosenholm JB, Nurmi K (2003) Flocculation of calcite dispersions induced by the adsorption of highly cationic starch. Colloids Surf A 219(1–3):55–66CrossRefGoogle Scholar
  39. 39.
    Ozyildirim C, Zegetosky C (2010) Exploratory investigation of nanomaterials to improve strength and permeability of concrete. Transp Res Rec J Transp Res Board 2142:1–8CrossRefGoogle Scholar
  40. 40.
    Panya P, Arquero O-A, Franks GV, Wanless EJ (2004) Dispersion stability of a ceramic glaze achieved through ionic surfactant adsorption. J Colloid Interface Sci 279(1):23–35CrossRefGoogle Scholar
  41. 41.
    Peng P, Garnier G (2012) Effect of cationic polyacrylamide on precipitated calcium carbonate flocculation: kinetics, charge density and ionic strength. Colloids Surf A 408:32–39CrossRefGoogle Scholar
  42. 42.
    Péra J, Husson S, Guilhot B (1999) Influence of finely ground limestone on cement hydration. Cem Concr Compos 21(2):99–105CrossRefGoogle Scholar
  43. 43.
    Plank J, Hirsch C (2007) Impact of zeta potential of early cement hydration phases on superplasticizer adsorption. Cem Concr Res 37(4):537–542CrossRefGoogle Scholar
  44. 44.
    Plank J, Sachsenhauser B (2009) Experimental determination of the effective anionic charge density of polycarboxylate superplasticizers in cement pore solution. Cem Concr Res 39(1):1–5CrossRefGoogle Scholar
  45. 45.
    Qing Y, Zenan Z, Deyu K, Rongshen C (2007) Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr Build Mater 21(3):539–545CrossRefGoogle Scholar
  46. 46.
    Rosen MJ, Li F (2001) The adsorption of gemini and conventional surfactants onto some soil solids and the removal of 2-naphthol by the soil surfaces. J Colloid Interface Sci 234(2):418–424CrossRefGoogle Scholar
  47. 47.
    Sato T, Beaudoin J (2011) Effect of nano-CaCO3 on hydration of cement containing supplementary cementitious materials. Adv Cem Res 23(1):33–43CrossRefGoogle Scholar
  48. 48.
    Sato T, Diallo F (2010) Seeding effect of nano-CaCO3 on the hydration of tricalcium silicate. J Transp Res Board 2141:61–67CrossRefGoogle Scholar
  49. 49.
    Seo J-WT, Green AA, Antaris AL, Hersam MC (2011) High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers. J Phys Chem Lett 2(9):1004–1008CrossRefGoogle Scholar
  50. 50.
    Tyler TP, Shastry TA, Leever BJ, Hersam MC (2012) Narrow diameter distributions of metallic arc discharge single-walled carbon nanotubes via dual-iteration density gradient ultracentrifugation. Adv Mater 24(35):4765–4768CrossRefGoogle Scholar
  51. 51.
    Uchikawa H, Hanehara S, Shirasaka T, Sawaki D (1992) Effect of admixture on hydration of cement, adsorptive behavior of admixture and fluidity and setting of fresh cement paste. Cem Concr Res 22(6):1115–1129CrossRefGoogle Scholar
  52. 52.
    Uchikawa H, Sawaki D, Hanehara S (1995) Influence of kind and added timing of organic admixture on the composition, structure and property of fresh cement paste. Cem Concr Res 25(2):353–364CrossRefGoogle Scholar
  53. 53.
    Winnefeld F, Becker S, Pakusch J, Götz T (2007) Effects of the molecular architecture of comb-shaped superplasticizers on their performance in cementitious systems. Cem Concr Compos 29(4):251–262CrossRefGoogle Scholar
  54. 54.
    Zelić J, Jozić D, Krpan-Lisica D (2009) Synergistic action of a ternary system of portland cement–limestone–silica fume in concrete. In: Bittnar Z, Bartos PM, Němeček J, Šmilauer V, Zeman J (eds) Nanotechnology in construction 3. Springer, BerlinGoogle Scholar
  55. 55.
    Zingg A, Winnefeld F, Holzer L, Pakusch J, Becker S, Figi R, Gauckler L (2009) Interaction of polycarboxylate-based superplasticizers with cements containing different C3A amounts. Cem Concr Compos 31(3):153–162CrossRefGoogle Scholar
  56. 56.
    Zingg A, Winnefeld F, Holzer L, Pakusch J, Becker S, Gauckler L (2008) Adsorption of polyelectrolytes and its influence on the rheology, zeta potential, and microstructure of various cement and hydrate phases. J Colloid Interface Sci 323(2):301–312CrossRefGoogle Scholar

Copyright information

© RILEM 2013

Authors and Affiliations

  • Shiho Kawashima
    • 1
    • 3
  • Jung-Woo Ted Seo
    • 2
  • David Corr
    • 3
  • Mark C. Hersam
    • 2
  • Surendra P. Shah
    • 3
  1. 1.Department of Civil Engineering and Engineering MechanicsColumbia UniversityNew YorkUSA
  2. 2.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA
  3. 3.Department of Civil and Environmental EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations