Skip to main content
Log in

A new laboratory method to evaluate the influence of aggregate temperature on the binder-aggregate bonding: first results

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In this paper, the effects of aggregates temperature reduction in asphalt mix manufacturing process have been analyzed in terms of complex modulus, fatigue and stripping resistance according to standard tests. The limits of these conventional standardized tests have been analyzed and a new method has been developed to estimate the bitumen-aggregate bonding quality when aggregate temperature is reduced. This method is based on the thermal contact resistance (TCR) assessment at the bitumen-substrate interface which reflects the contact imperfection at the microscopic scale. The study has shown that the TCR decreases when the aggregate temperature increases. Consequently, the TCR could be used as a bonding quality criterion in asphalt manufacturing condition when aggregates temperature is reduced. The results have been well correlated with a modified mechanical stripping test developed. It has been proved that when aggregates temperature decreases, the TCR increases and the stripping resistance decreases due to the poor bitumen-aggregates bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

|E*|:

Complex modulus, MPa

P :

Wölher curve slope

C p :

Specific heat capacity, Jkg−1K−1

T :

Time, s

X :

Abscissa, m

l :

Bitumen thickness, m

L :

Distance between interface and TC5, m

T :

Average estimated temperature,  °C

Tbs:

Bitumen surface temperature,  °C

Tss:

Substrate surface temperature,  °C

TCi :

Temperature measured by sensor i

TCR:

Thermal contact resistance Km²W−1

R a :

Arithmetic average of the absolute values of surface roughness

R q :

Quadratic roughness of surface profile

N EN :

Number of cycles

R, r :

Compression strength, MPa of the measured profile height deviation, μm

λ :

Thermal conductivity, Wm−1K−1

ρ :

Density, kgm−3

φ :

Heat flux density Wm−2

ε 6 :

Strain at 106 cycles

ε :

Strain

s :

Granular substrate

b :

Bitumen

References

  1. Beck J, Blackwell B, Charles RS, Clair J (1985) Inverse heat conduction: Ill-posed problems. Wiley Interscience, New York

  2. Bhasin A, Masad E, Little DN, Lytton R (2006) Limits on adhesive bond energy for improved resistance of hot mix asphalt to moisture damage. In: Transportation Research Board conference proceeding

  3. Bodin D (2002) Modèle d’endommagement cyclique: application à la fatigue des enrobes bitumineux. PhD, University of Nantes (In French)

  4. Boulangé L, Sterezynski F (2012) Study of interfacial interactions between bitumen and various aggregates used in roads construction. J Adhes Sci Technol 26:163–173

    Google Scholar 

  5. Canestrari F, Cardone F, Graziani A, Santagata FA, Bahia HU (2010) Adhesive and cohesive properties of asphalt-aggregate systems subject to moisture damage. Int J Road Mater Pavement Des 11:11–32

    Article  Google Scholar 

  6. Castaneda E (2004) Contribution de méthodes non destructives à l’évaluation de l’effet de l’eau dans les enrobés bitumineux, PhD, University of Nantes

  7. Di Benedetto H, Partl MN, Francken L, la Roche De, Saint André C (2001) Stiffness testing of bituminous mixtures. Mater Struct 34:66–70

    Article  Google Scholar 

  8. Di Benedetto H, De la Roche C, Baaj H, Pronk A, Lundström R (2004) Fatigue of bituminous mixtures. Mater Struct 37:202–216

    Article  Google Scholar 

  9. Di Benedetto H, Olard F, Sauzéat C, Delaporte B (2004) Linear viscoelastic behavior of bituminous materials: from binders to mixes. Int J Road Mater Pavement Des 5:163–202

    Article  Google Scholar 

  10. Dubois V, De La Roche C, Burban O (2010) Influence of the compaction process on the air void homogeneity of asphalt mixtures samples. Constr Build Mater 24:885–897

    Article  Google Scholar 

  11. Edwards Y, Tasdemir Y, Isacsson U (2006) Influence of commercial waxes and polyphosphoric acid on bitumen and asphalt concrete performance at low and medium temperatures. Mater Struct 39:725–737

    Article  Google Scholar 

  12. Ferry JD (1961) Viscoelasticity of polymers. Wiley, New York

    Google Scholar 

  13. Hesami E, Jelagin D, Kringos N, Birgisson B (2012) An empirical framework for determining asphalt mastic viscosity as a function of mineral filler concentration. Constr Build Mater 35:23–29

    Article  Google Scholar 

  14. Hurley GC, Prowell BD (2005a) Evaluation of Aspha-min zeolite for use in warm mix asphalt. NCAT Report 05–04 June

  15. Hurley GC, Prowell BD (2005b) Evaluation of sasobit for use in warm mix asphalt. NCAT Report 06–05 June

  16. Hurley GC, Prowell BD (2006) Evaluation of Evotherm for use in warm mix asphalt. NCAT Report 06–02 June

  17. Le Goff R, Poutot G, Delaunay D, Fulchiron R, Koscher E (2005) Study and modeling of heat transfer during the solidification of semi-crystalline polymer. Int J Heat Mass Transf 48:5417–5430

    Article  Google Scholar 

  18. Lu X, Redelius P (2007) Effect of bitumen wax on asphalt mixture performance. Constr Build Mater 21:1961–1970

    Article  Google Scholar 

  19. Lyne ÅL, Redelius P, Collin M, Birgisson B (2012) Characterization of stripping properties of stone material in asphalt. Mater Struct. doi:10.1617/s11527-012-9882-6

  20. Mo L, Li X, Fang X, Huurman M, Wu S (2012) Laboratory investigation of compaction characteristics and performance of warm mix asphalt containing chemical additives. Constr Build Mater 37:239–247

    Article  Google Scholar 

  21. Moutier F (1991) Etude statistique de l’effet de la composition des enrobes bitumineux sur leur comportement en fatigue et leur module complexe, Bulletin de Liaison des Ponts et Chaussées, Thématique : bitume et enrobés bitumineux, pp 71–79 (In French)

  22. Pronk AC (2005) The Huet–Sayegh model: a simple and excellent rheological model for master curves of asphaltic mixes asphalt concrete. In: American Society of Civil Engineering conference proceeding paper, pp 73–82

  23. Sanchez-Alonzo E, Vega-Zamanillo A, Castro-Fresno D, Delrio-Prat M (2011) Evaluation of compactability and mechanical properties of bituminous mixes with warm additives. Constr Build Mater 25:2304–2311

    Article  Google Scholar 

  24. Sayegh G (1965) Contribution à l’étude des propriétés viscoélastiques des bitumes purs et des bétons bitumineux. PhD, University of Paris (In French)

  25. Somé SC, Gaudefroy V, Delaunay D (2012) Use of inverse method for bonding quality assessment between bitumen and aggregates under asphalt mixes manufacturing conditions, ASME-ESDA Conference, 2–4th July. Nantes, France

    Google Scholar 

  26. Somé SC, Gaudefroy V, Delaunay D (2012) Estimation of bonding quality between bitumen and aggregate under asphalt mixture manufacturing condition by thermal contact resistance measurement. Int J Heat Mass Transf 55:6854–6863

    Article  Google Scholar 

  27. Somé SC (2012) Comportement thermomécanique des enrobes bitumineux tièdes et de l’interface bitume-granulat. PhD, University of Nantes (In French)

  28. Such C (2007) Caractérisation des liants bitumineux et performances des enrobés: recherche de corrélations. Laboratoire Central des Ponts et Chaussées, CR 48, ISSN 1160-9761 (In French)

  29. Tardif X, Agazzi A, Sobotka V, Boyard N, Jarny Y, Delaunay D (2012) A multifunctional device to determine the specific volume, thermal conductivity and crystallisation kinetics of semi-crystalline polymers. Polym Test 31:819–827

    Article  Google Scholar 

  30. Vasconcelos KL, Bhasin A, Little DN (2010) Influence of reduced production temperature on the adhesive properties of aggregates and laboratory performance of fine aggregate-asphalt mixtures. Road Mater Pavements Des 11:47–64

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saannibe Ciryle Somé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somé, S.C., Gaudefroy, V. & Delaunay, D. A new laboratory method to evaluate the influence of aggregate temperature on the binder-aggregate bonding: first results. Mater Struct 47, 963–976 (2014). https://doi.org/10.1617/s11527-013-0106-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-013-0106-5

Keywords

Navigation