Skip to main content

Advertisement

Log in

Simulation of fresh concrete flow using Discrete Element Method (DEM): theory and applications

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This article provides an overview of the development and the contemporary state of research in the field of simulating fresh concrete flow using the Discrete Element Method (DEM). First, this work originating from TC 222-SCF simulation of fresh concrete flow, covers the mathematical methodology, the identification of the model parameters and the link between the rheological properties of fresh concrete and the parameters of DEM-based models. Various examples of the estimation of model parameters and calibration of the model were demonstrated, followed by verifications by comparing the numerical results and the corresponding predictions by analytical formula and laboratory experiments. Furthermore, software used in concrete engineering and existing industrial applications of the developed particle models were described, showing the potential of DEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Mechtcherine V, Shyshko S (2009) Self-compacting concrete simulation using Distinct Element Method. In: Wallevik OH, Kubens S, Oesterheld S (eds) Proceedings of the 3rd international RILEM symposium on rheology of cement suspensions such as fresh concrete, Reykjavik, 19–21 Aug 2009. RILEM Publications, Bagneux, pp 171–179

    Google Scholar 

  2. Roussel N, Geiker MR, Dufour F, Thrane LN, Szabo P (2007) Computational modeling of concrete flow: general overview. Cem Concr Res 37(9):1298–1307

    Article  Google Scholar 

  3. Kishino Y (2001) Powders and grains 2001, Proceedings of the fourth international conference on micromechanics of granular media, Sendaï, 21–25 May 2001. A.A. Balkema Publishers, Lisse

    Google Scholar 

  4. Chu H, Machida A, Suzuki N (1996) Experimental investigation and DEM simulation of filling capacity of fresh concrete. Trans Jpn Concr Inst 16:9–14

    Google Scholar 

  5. Chu H, Machida A (1996) Numerical simulation of fluidity behaviour of fresh concrete by 2D distinct element method. Trans Jpn Concr Inst 18:1–8

    Google Scholar 

  6. Noor MA, Uomoto T (1999) Three-dimensional discrete element simulation of rheology tests of Self-Compacting Concrete. In: Skarendahl Å, Petersson Ö (eds) Proceedings of the 1st international RILEM symposium on self-compacting concrete, Stockholm, 13–14 Sep 1999. RILEM Publications, Cachan, pp 35–46

    Google Scholar 

  7. Petersson Ö, Hakami H (2001) Simulation of SCC—laboratory experiments and numerical modeling of slump flow and L-box tests. In: Ozawa K, Ouchi M (eds) Proceedings of the 2nd international symposium on self-compacting concrete, Tokyo, 23–25 Oct 2001. Coms Engineering Corporation, Tokyo, pp 79–88

    Google Scholar 

  8. Petersson Ö (2003) Simulation of self-compacting concrete—laboratory experiments and numerical modeling of testing methods, J-ring and L-box tests. In: Wallevik Ó, Níelsson I (eds) Proceedings of the 3rd international RILEM symposium on self-compacting concrete, Reykjavik, 17–20 Aug 2003. RILEM Publications, Bagneux, pp 202–207

    Google Scholar 

  9. Shyshko S, Mechtcherine V (2006) Continuous numerical modelling of concrete from fresh to hardened state. In: F. A. Finger-Institut für Baustoffkunde (ed) Tagungsbericht der 16. Internationalen Baustofftagung, ibausil, Weimar, 20–23 Sep 2006, vol 2. Bauhaus Universität, Weimar, pp 165–172

    Google Scholar 

  10. Mechtcherine V, Shyshko S (2007) Virtual concrete laboratory—continuous numerical simulation of concrete behaviour from fresh to hardened state. In: Grosse CU (ed) Advances in construction materials. Springer, Berlin-Heidelberg, pp 479–488

    Google Scholar 

  11. Mechtcherine V, Shyshko S (2007) Simulating the behaviour of fresh concrete using Distinct Element Method. In: De Schutter G, Boel V (eds) Proceedings of the 5th international RILEM symposium on self-compacting concrete—SCC 2007, Ghent, 3–5 Sep 2007. RILEM Publications, Bagneux, pp 467–472

    Google Scholar 

  12. Kuch H, Palzer S, Schwabe J-H (2006) Anwendung der Simulation bei der Verarbeitung von Gemengen. In: F. A. Finger-Institut für Baustoffkunde (ed) Tagungsbericht der 16. Internationalen Baustofftagung, ibausil, Weimar, Germany, 20-23 September 2006, vol 1. Bauhaus Universität, Weimar, pp 1321–1327

    Google Scholar 

  13. Schwabe J-H, Kuch H (2005) Development and control of concrete mix processing procedures. In: Borghoff M, Gottschalg A, Mehl R (eds) Proceedings of the 18th BIBM international congress and exhibition, Amsterdam, 11–14 May 2005. Bond van Fabrikanten van Betonproducten in Nederland, Woerden, pp 108–109

    Google Scholar 

  14. Konietzky H (ed) (2002) Numerical modelling in micromechanics via particle methods. In: Proceedings of the 1st international PFC symposium, Gelsenkirchen, 6–8 Nov 2002. A. A. Balkema Publishers, Lisse

  15. Cundall PA, Konietzky H, Potyondy DO (1996) PFC—Ein Neues Werkzeug für Numerische Modellierungen. Bautechnik 73(8):492–498

    Google Scholar 

  16. Itasca Consulting Group Inc. (2002) PFC 2D, version 3.0. ICG, Minneapolis

    Google Scholar 

  17. Malkin AY, Isayev AI (2006) Rheology—concepts, methods and applications. ChemTec Publishing, Toronto

    Google Scholar 

  18. Macosko CW (1994) Rheology principles, measurements and applications. Wiley-VCH, New York

    Google Scholar 

  19. Roussel N (2006) Correlation between yield stress and slump: comparison between numerical simulations and concrete rheometers results. Mater Struct 39:501–509

    Article  Google Scholar 

  20. Shyshko S, Mechtcherine V (2008) Simulating the workability of fresh concrete. In: Schlangen E, De Schutter G (eds) Proceedings of the international RILEM symposium of concrete modelling—CONMOD’08, Delft, 26–28 May 2008. RILEM Publications, Bagneux, pp 173–181

    Google Scholar 

  21. Krenzer K, Schwabe J-H (2009) Calibration of parameters for particle simulation of building materials, using stochastic optimization procedures. In: Wallevik OH, Kubens S, Oesterheld S (eds) Proceedings of the 3rd international RILEM symposium on rheology of cement suspensions such as fresh concrete, Reykjavik, 19–21 Aug 2009. RILEM Publications, Bagneux

    Google Scholar 

  22. Shyshko S, Mechtcherine V (2010) Simulating fresh concrete behaviour—establishing a link between the Bingham model and parameters of a DEM-based numerical model. In: HetMat—modelling of heterogenous materials, Brameshuber W (eds) RILEM Proceedings PRO 76. RILEM Publications SARL, Bagneux, pp 211–219

    Google Scholar 

  23. Roussel N, Coussot P (2005) Fifty-cent rheometer for yield stress measurements—from slump to spreading flow. J Rheol 49(3):705–718

    Article  Google Scholar 

  24. Roussel N, Stefani C, Leroy R (2005) From mini cone test to Abrams cone test: measurement of cement based materials yield stress using slump tests. Cem Concr Res 35(5):817–822

    Article  Google Scholar 

  25. Gram A, Silfwerbrand J (2011) Numerical simulation of fresh SCC flow: applications. Mater Struct 44:805–813

    Article  Google Scholar 

  26. Takashima H, Miyagai K, Hashida T, Li VC (2003) A design approach for the mechanical properties of polypropylene discontinuous fiber reinforced cementitious composites by extrusion molding. Eng Fract Mech 70(7–8):853–870

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Roussel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mechtcherine, V., Gram, A., Krenzer, K. et al. Simulation of fresh concrete flow using Discrete Element Method (DEM): theory and applications. Mater Struct 47, 615–630 (2014). https://doi.org/10.1617/s11527-013-0084-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-013-0084-7

Keywords

Navigation