Skip to main content
Log in

Effect of calcium–silicon ratio on microstructure and nanostructure of calcium silicate hydrate synthesized by reaction of fumed silica and calcium oxide at room temperature

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

A C–S–H series with calcium–silicon ratio 0.6–3.0 was synthesized by pozzolanic reaction. Phase composition, nanostructural and morphological characteristics were determined using XRD, XRF, SEM and 29Si NMR. Most of the samples were phase-pure, poorly crystalline C–S–H. Significant changes in the nanostructure of the C–S–H samples were observed when the calcium–silicon ratio reached values of 0.8, 1.0 and 1.5. At calcium–silicon ratio 0.8 the basal XRD peak began to develop, crosslinking between layers was seen below this ratio but not above, and there was a substantial decrease in mean silica chain length at this ratio. At calcium–silicon ratio 1.0 there was a pronounced microstructural change from granular to reticular and another substantial decrease in mean chain length (indicated by an abrupt increase in the Q1 peak intensity and decrease in the Q2 peak intensity). At calcium–silicon ratio 1.5 the basal XRD peak began to diminish again, the mean silica chain length decreased further, and isolated tetrahedra (Q0) were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Taylor HFW (1997) Cement chemistry, 2nd edn. Thomas Telford, London

    Book  Google Scholar 

  2. Richardson IG (1999) The nature of C–S–H in hardened cements. Cem Concr Res 29:1131–1147

    Article  Google Scholar 

  3. Chen JJ (2003) The nanostructure of calcium silicate hydrate. PhD thesis, Northwestern University

  4. Cong XD (1994) 29Si and 17O nuclear magnetic resonance investigation of the structure of calcium–silicate–hydrate. PhD thesis, University of Illinois, Urbana-Champaign

  5. Locher FW (1966) Stoichiometry of tricalcium silicate hydration, Special Report. Highway Research Board, Washington, DC, pp 300–308

    Google Scholar 

  6. Odler I, Skalny J (1973) Hydration of tricalcium silicate at elevated temperature. J Appl Chem Biotechnol 23:661–667

    Article  Google Scholar 

  7. Diamond S (1976) C/S mole ratio of C–S–H gel in a mature C3S paste as determined by EDXA. Cem Concr Res 16:413–416

    Article  Google Scholar 

  8. Gard JA, Mohan K, Taylor HFW, Cliff G (1980) Analytical electron microscopy of cement pastes I, tricalcium silicate pastes. J Am Ceram Soc 63:336–337

    Article  Google Scholar 

  9. Lachowski EE, Mohan K, Taylor HFW, Lawrence CD, Moore AE (1981) Analytical electron microscopy of cement pastes: III pastes hydrated for long times. J Am Ceram Soc 64:319–321

    Article  Google Scholar 

  10. Mohan K, Taylor HFW (1981) Analytical electron microscopy of cement pastes: IV dicalcium silicate pastes. J Am Ceram Soc 64:717–719

    Article  Google Scholar 

  11. Richardson IG, Groves GW (1993) Microstructure and microanalysis of hardened ordinary Portland cement pastes. J Mater Sci 28:265–277

    Article  Google Scholar 

  12. Kumar R, Kumar S, Badjena S, Mehrotra SP (2005) Hydration of mechanically activated granulated blast furnace slag. Metall Mater Trans B 36(12):873–883

    Article  Google Scholar 

  13. Girão CAV, Richardson IG, Porteneuve CB, Brydson RMD (2007) Composition, morphology and nanostructure of C–S–H in white Portland cement pastes hydrated at 55 °C. Cem Concr Res 37:1571–1582

    Article  Google Scholar 

  14. Luke K, Lachowski E (2008) Internal composition of 20-year-old fly ash and slag-blended ordinary Portland cement pastes. J Am Ceram Soc 91(12):4084–4092

    Article  Google Scholar 

  15. Taylor HFW (1950) Hydrated calcium silicates, part I compound formation at ordinary temperatures. J Chem Soc 3682–3690. doi:10.1039/JR9500003690

  16. Taylor HFW (1968) The calcium silicate hydrate. In: Proceedings of the 5th Symposium Chemistry Cement, Tokyo, II, pp 1–26

  17. Taylor HFW (1990) Cement chemistry. Academic Press, London

    Google Scholar 

  18. Gard JA, Taylor HFW (1976) Calcium silicate hydrate(II) (C–S–H(II)). Cem Concr Res 6:667–678

    Article  Google Scholar 

  19. Taylor HFW (1986) Proposed structure for calcium silicate hydrate gel. J Am Ceram Soc 69(6):464–467

    Article  Google Scholar 

  20. Taylor HFW (1993) Nanostructure of C–S–H: current status. Adv Cem Bas Mat 1:38–46

    Article  Google Scholar 

  21. Bell GMM, Bensted J, Glasser FP, Lachowshi EE, Roberts DR, Taylor MJ (1990) Study of calcium silicate by solid state high resolution 29Si nuclear magnetic resonance. Adv Cem Res 3:23–38

    Article  Google Scholar 

  22. Cong XD, Kirkpatrick RJ (1996) 29Si MAS NMR study of the structure of calcium silicate hydrate. Adv Cem Based Mater 3:144–156

    Article  Google Scholar 

  23. Grutzeck M, Benesi A, Fanning B (1989) Silicon-29 magic angle spinning nuclear magnetic resonance study of calcium silicate hydrates. J Am Ceram Soc 72(4):665–668

    Article  Google Scholar 

  24. Lippmass E, Mägi M, Tarmak M, Wieker W, Grimmer AR (1982) A high resolution 29Si NMR study of the hydration of tricalcium silicate. Cem Concr Res 12:597–602

    Article  Google Scholar 

  25. Young JF (1988) Investigations of calcium silicate hydrates structure using silicon-29 nuclear magnetic resonance spectroscopy. J Am Ceram Soc 71:C-118–C-120

    Google Scholar 

  26. Rodger SA, Groves GW, Clayden NJ, Dodson CM (1988) Hydration of tricalcium silicate followed by 29Si NMR with cross-polarization. J Am Ceram Soc 71:91–96

    Article  Google Scholar 

  27. Cong XD, Kirkpatrick RJ (1993) 17O and 29Si MAS NMR study of β-C2S hydration and the structure of calcium–silicate hydrates. Cem Concr Res 23:1065–1077

    Article  Google Scholar 

  28. Fernandez L, Alonso C, Andrade C, Hidalgo A (2008) The interaction of magnesium in hydration of C3S and CSH formation using 29Si MAS-NMR. J Mater Sci 43:5772–5783

    Article  Google Scholar 

  29. Barnes JR, Clague ADH, Clayden NJ, Dobson CM, Hayes CJ, Groves GW, Rodger SA (1985) Hydration of Portland cement followed by 29Si solid-state NMR spectroscopy. J Mater Sci Lett 4(10):1293–1295

    Article  Google Scholar 

  30. Beaudoin JJ, Raki L, Alizadeh R (2009) A 29Si MAS NMR study of modified C–S–H nanostructures. Cem Concr Compos 31:585–590

    Article  Google Scholar 

  31. Tennis PD, Jennings HM (2000) A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes. Cem Concr Res 30:855–863

    Article  Google Scholar 

  32. Diamond S (1976) Cement paste microstructure: an overview at several levels, in Hydraulic cement pastes: their structure and properties. Wexham Springs. pp 1–30

  33. Richardson IG (2008) The calcium silicate hydrates. Cem Concr Res 38:137–158

    Article  Google Scholar 

  34. Stucke MS, Majumdar AJ (1977) The morphology and composition of an immature C3S paste. Cem Concr Res 7:711–718

    Article  Google Scholar 

  35. Chatterji S, Jeffrey JW (1962) Studies of early stages of paste hydration of cement compounds I. J Am Ceram Soc 45(11):536–543

    Article  Google Scholar 

  36. Lawrence FV Jr, Young JF (1973) Studies on the hydration of tricalcium silicate pastes: I. Scanning electron microscopic examination of microstructural features. Cem Concr Res 3(2):149–161

    Article  Google Scholar 

  37. Grudemo A (1960) The microstructure of hardened cement paste. In: Proceedings of the Fourth International Symposium on the Chemistry of Cement, Washington, II, pp 615–658

  38. Richardson IG, Cabrera JG (2000) The nature of C–S–H in model slag-cements. Cem Concr Compos 22:259–266

    Article  Google Scholar 

  39. Diamond S, Bonen D (1993) Microstructure of hardened cement paste—a new interpretation. J Am Ceram Soc 76(12):2993–2999

    Article  Google Scholar 

  40. Jennings HM, Dalgleish BJ, Pratt PL (1981) Morphological development of hydrating tricalcium silicate as examined by electron microscopy. J Am Ceram Soc 64(10):567–572

    Article  Google Scholar 

  41. Ciach TD, Gillott JE, Swenson EG, Sereda PJ (1971) Microstructure of calcium silicate hydrates. Cem Concr Res 1:13–25

    Article  Google Scholar 

  42. Jennings HM, Tennis PD (1994) Model for the developing microstructure in Portland Cement Pastes. J Am Ceram Soc 77(12):3161–3172

    Article  Google Scholar 

  43. Jennings HM (2000) A model for the microstructure of calcium silicate hydrate in cement paste. Cem Concr Res 30:101–116

    Article  Google Scholar 

  44. Klur I, Pollet B, Virlet J, Nonat A (1996) C–S–H structure evolution with calcium content by multinuclear NMR. In: Colombet P, Grimmer A-R, Zanni H, Sozzani P (eds) Nuclear magnetic resonance spectroscopy of cement-based materials. Springer, Berlin, pp 119–141

    Google Scholar 

  45. Farmer VC, Jeevaratnam J, Speakman K, Taylor HFW (1966) Thermal decomposition of 14 Å tobermorite from crestmore. In: Symposium on structure of Portland cement paste and concrete (special report 90). Highway Research Board, Washington, DC, pp 291–298

  46. Hamid SA (1981) The crystal structure of the 11 Å natural tobermorite Ca2.25[Si3O7.5(OH)1.5] 1H2O. Zeit Kristall 154:189–198

    Article  Google Scholar 

  47. Gard JA, Taylor HFW, Cliff G, Lorimer GW (1977) A reexamination of jennite. Am Miner 62:365–368

    Google Scholar 

  48. Lippmass E, Mägi M, Samoson A, Engelhardt G, Grimmer A-R (1980) Structural studies of silicates by solid-state high-resolution 29Si NMR. J Am Chem Soc 102:4889–4893

    Article  Google Scholar 

  49. Maciel GE, Sindorf DW (1980) Silicon-29 NMR study of the surface of silica gel by cross polarization and magic-angle spinning. J Am Chem Soc 102:7606–7607

    Article  Google Scholar 

  50. Cong XD, Kirkpatrik RJ (1993) 29Si MAS NMR spectroscopic investigation of alkali silica reaction product gels. Cem Concr Res 23:811–823

    Article  Google Scholar 

  51. Chen JJ, Thomas JJ, Taylor HFW, Jennings HM (2004) Solubility and structure of calcium silicate hydrate. Cem Concr Res 34:1499–1519

    Article  Google Scholar 

  52. Macphee DE, Lachowski EE, Glasser FP (1988) Polymerization effects in C-S–H: implications for Portland cement hydration. Adv Cem Res 1:131–137

    Article  Google Scholar 

  53. Wieker W, Grimmer A-R, Winkler A, Mägi M, Tarmak M, Lippmaa E (1982) Solid-state high-resolution 29Si NMR spectroscopy of synthetic 14 Å, 11 Å, and 9 Å tobermorites. Cem Concr Res 12:333–339

    Article  Google Scholar 

  54. Sato H, Grutzeck M (1992) Effect of starting materials on the synthesis of tobermorite. Mater Res Soc Symp Proc 245:235–240

    Article  Google Scholar 

  55. Popova A, Geoffroy G, Renou-Gonnord MF, Faucon P, Gartner E (2000) Interactions between polymeric dispersants and calcium silicate hydrates. J Am Ceram Soc 83(10):2556–2560

    Article  Google Scholar 

  56. Sherriff BL, Grundy HD (1988) Calculations of 29Si MAS NMR chemical shift from silicate mineral structure. Nature 332:819–822

    Article  Google Scholar 

  57. Brough AR, Dobson CM, Richardson IG, Groves GW (1994) Application of selective 29Si isotopic enrichment to studies of the structure of calcium silicate hydrate (C–S–H) gels. J Am Ceram Soc 77:593–596

    Article  Google Scholar 

  58. Richardson IG, Groves GW (1992) Models for the composition and structure of calcium silicate hydrate (C–S–H) gel in hardened tricalcium silicate pastes. Cem Concr Res 22:1001–1010

    Article  Google Scholar 

Download references

Acknowledgments

The work presented in this paper was supported by the National Basic Research Program of China (973 Program, No. 2009CB623201) and Natural Science Foundation of China (No. 51072150). We would like to thank Xiaogang Zhao for some experimental help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linnu Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Lu, L., Struble, L.J. et al. Effect of calcium–silicon ratio on microstructure and nanostructure of calcium silicate hydrate synthesized by reaction of fumed silica and calcium oxide at room temperature. Mater Struct 47, 311–322 (2014). https://doi.org/10.1617/s11527-013-0062-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-013-0062-0

Keywords

Navigation