Skip to main content
Log in

Development of a poultice for electrochemical desalination of porous building materials: desalination effect and pH changes

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Salt induced deterioration of structures and stones are generally recognized as a frequent and serious problem. The deterioration is especially undesired in relation to cultural heritage as it is impossible to recreate original material (e.g. original murals). By presence of salts in decorated vaults two different techniques are applied: poultices or establishment of climate chambers. Both techniques can result in ion transport away from the valuable surfaces with murals, but satisfying desalination has not been obtained according to conservators from the Danish National Museums mural preservation section in consistence with the present available literature. In the present paper the possibility for salt removal by utilizing a well known and accepted transport process, electromigration, is investigated, i.e. movement of ions in a solution in an applied electric DC field. An experimental laboratory setup was designed to approximate real conditions in vaults and with ion contents corresponding to normal heavily polluted church vaults (1.0 wt% Chloride, added as NaCl). During the electromigration process acid and base is produced at the electrodes due to electrode reactions and in a clarifying experiment with a traditional poultice significant pH changes and an absence of satisfying high desalination effect was measured. The new idea in the present paper was to introduce a calculated amount of buffer components corresponding to the productions during the electrode processes to a poultice (a solid) to minimize the adverse effects and to optimize on the effects. The results showed good ability to retain neutral pH values in the substrate which is of major importance when the method should be applied on existing structures. Also the desalination process continued until a very low and harmless salt content was reached after introduction of the buffer components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Larsen PK (1999) Desalination of painted brick vaults. PhD thesis, Department of Structural Engineering and Materials, Technical University of Denmark. Series R, no 52, pp 5, 64

  2. Voronina V (2011) Salt extraction by poulticing: an NMR study. PhD thesis, Technische Universiteit Eindhoven, pp 2, 97

  3. Sawdy A, Lubelli B, Voronina V, Funke F, Pel L (2010) Optimising the extraction of soluble salts from porous materials by poultices. Stud Conserv 55:26–40

    Google Scholar 

  4. Lubelli B, van Hess RPJ (2010) Desalination of masonry structures: fine tuning of pore size distribution of poultices to substrate properties. J Cult Heritage 11(1):10–18

    Article  Google Scholar 

  5. Lubelli B, van Hees RPJ, De Clercq H (2011) Fine tuning of desalination poultices: try-outs in practice. In: Proceedings “Salt weathering on buildings and stone sculptures”, Limassol, Cyprus, 19–22 Oct 2011, pp 381–388

  6. Pel L, Sawdy A, Voronina V (2010) Physical principles and efficiency of salt extraction by poulticing. J Cult Heritage 11(2010):59–67

    Article  Google Scholar 

  7. Bøllingtoft P, Larsen PK (2002) The use of passive climate control to prevent salt decay in Danish churches. Tagungsbeiträge “Mauersalze und Architekturoberflächen”, 1–3 Februar 2002, pp 90–93

  8. Larsen PK (2002) The use of passive climate control to prevent salt decay in Rørby church. The study of salt deterioration mechanisms. Decay of brick walls influenced by interior climate changes. European Heritage Laboratories—Rapheäl Project 1999, pp 102–107

  9. Larsen PK (2007) Climate control in Danish churches. In: Padfield T, Borchersen K (eds) Proceedings “Museums microclimates”, pp 167–174

  10. Laue S (2002) Salze und Raumklima in historischen Gebäuden. In: Proceedings “Mauersalze und Architekturoberflächen”, Dresden, Germany, 1–3 Feb 2002, pp 65–71

  11. Friese P, Birkenhofer H (1985) Elektrochemische Entsalzung von Mauerwerk, praktische Ausführung, Entsalzung und Trocknung. Bauphysik 4:105–109

    Google Scholar 

  12. Demberger L (1991) Elektrochemische Vorgänge zur Entfeuchtung von Mauerwerk. Bautenschutz + Bausanierung 14:115–119

  13. Auras M, Melisa G (2002) Kompressenentsalzung – Wirkungsprinzip, Materialien, Anwendung, Fallbeispiele. Salze im historischen Natursteinmauerwerk. IFS-Tagung 2002. Institut für Steinkonservierung e.V. Bericht Nr. 14 – 2002

  14. Friese P, Protz A (2002) Entsalzung von Mauerwerk und Wandmalerei – Transportmechanismen und Beispiele für die praktische Anwendung. Tagungsbeiträge. Hochschule für Bildende Künste Dresden. Mauersalze und Architekturoberflächen. Herausgeber: Heinz Leitner, Steffen Laue, Heiner Siedel, pp 148–153

  15. Rörig-Dalgaard I (2009) Preservation of murals with electrokinetic—with focus on desalination of single bricks. PhD thesis, Technical University of Denmark

  16. Ottosen LM, Rörig-Dalgaard I (2009) Desalination of brick by application of an electric DC field. J Mater Struct 42(7):961–971

    Article  Google Scholar 

  17. Paz-García JM, Johannesson B, Ottosen LM, Ribeiro AB, Rodríguez-Maroto JM (2011) Modeling of electrokinetic processes by finite element integration of the Nernst-Planck-Poisson system of equations. J Sep Purif Technol 79(2011):183–192

    Article  Google Scholar 

  18. Kamran K, Pel L, Sawdy A, Huinink H, Kopinga K (2012) Desalination of porous building materials by electrokinetics an NMR study. Mater Struct 45:297–308

    Article  Google Scholar 

  19. Rörig-Dalgaard I, Ottosen LM, Hansen KK (2012) Diffusion and electromigration in clay bricks influenced by differences in the pore system resulting from firing. J Constr Build Mater 27:390–397

    Article  Google Scholar 

  20. Krenkler K (1980) Chemie des Bauwesens, Band 1 Anorganische Chemie. Springer-Verlag, New York, pp 133–136

    Book  Google Scholar 

  21. Schumann I (1997) Zur nachträglichen Bestimmung der Brenntemperatur und zum Einfluss der Brenntemperatur auf die chemische Beständigkeit von Ziegeln, pp 85–87

  22. Castellote M, Andrade C, Alonso C (2000) Electrochemical removal of chlorides—modelling of the extraction, resulting profiles and determination of the efficient time of treatment. Cem Concr Res 30(2000):615–621

    Article  Google Scholar 

  23. van Nostrand RV, Cook KL (1966) Interpretation of resistivity data. Geological Survey professional paper 499. United States Government Printing Office, Washington

  24. Acar YB, Alshawabkeh AN (1993) Principles of electrokinetic remediation. Environ Sci Technol 27(13):2638–2647

    Google Scholar 

  25. Radeka M (2007) Microbial deterioration of clay roofing tiles. In: Proceedings at the 10th international conference on structural studies, repairs and maintenance of heritage architecture, Prague, pp 567–575

  26. Ottosen LM, Hansen HK, Laursen S, Villumsen A (1997) Electrodialytic remediation of soil polluted with copper from wood preservation industry. Environ Sci Technol A31:1711–1715

    Article  Google Scholar 

  27. Banfill PFG (1997) Re-alkalisation of carbonated concrete—effect on concrete properties. Constr Build Mater 11(4):255–258

    Article  Google Scholar 

  28. Nguyen NY, Chrambrach A (1977) Natural pH gradients in buffer mixtures: formation in the absence of strongly acidic and basic anolyte and catholyte, gradient steepening by sucrose, and stabilization by high buffer concentrations in the electrolyte chambers. J Anal Biochem 79:462–469

    Article  Google Scholar 

  29. Cang L, Zhou D, Alshawabkeh AN, Chen H (2007) Effects of sodium hypochlorite and high pH buffer solution in electrokinetic soil treatment on soil chromium removal and the functional diversity of soil microbial community. J Hazard Mater 142:111–117

    Article  Google Scholar 

  30. Zhou D, Zorn R, Czurda K (2003) Electrochemical remediation of copper contaminated kaolinete by conditioning anolyte and catholyte pH simultaneously. J Environ Sci 15(3):396–400

    Google Scholar 

  31. Atkins PW (1990) Physical chemistry, 4th edn. Oxford University Press, Oxford, p 236

    Google Scholar 

  32. Grimshaw RW, Harland CE (1975) Ion-exchange: introduction to theory and practice. Monographs for teachers. The Chemical Society, London, p 3

    Google Scholar 

  33. Chang R (2005) Chemistry. International edition, 8th edn. Mcgraw Hill, pp 639, 651, 687

  34. Helt HC, Rancke-Madsen E (1991) Gads Fagleksikon – Kemi (Danish). Gads technical lexicon—chemistry, 1st edn. Gads Forlag, p 200

  35. Laidler KJ, Meiser JH, Sanctuary BC (2003) Physical chemistry, 4th edn. Houhton Mifflin Company, Boston, pp 285–287, 291, 986–987

  36. Zimmerman GH, Wood RH (2002) Conductance of dilute sodium acetate solutions to 469 K and of acetic acid and sodium acetate/acetic acid mixtures to 548 K and 20 MPa. J Solution Chem 31(12):995–1017

    Article  Google Scholar 

  37. Larsen PK (1996) Moisture physical properties of bricks: an investigation of Falkenløwe, Stralsund and Hartmann bricks, technical report 343. Technical University of Denmark, Department of Civil Engineering, Building Materials Laboratory

  38. WTA (2001) Merkblatt E-3-13-01/D, Zerstörungsfreies Entsalzen von Naturstein und anderen porösen Baustoffen mittels Kompressen. (Non-destructive desalination of natural stones and other porous building materials with compresses)

  39. Castellote M, Andrade C, Alonso C (1999) Modelling of the processes during steady-state migration tests: quantification of transference numbers. J Mater Struct 32:180–186

    Article  Google Scholar 

  40. Elsener B, Molina M, Böhni H (1993) The electrochemical removal of chlorides from reinforced concrete. J Corros Sci 35:1563–1570

    Article  Google Scholar 

  41. Ottosen LM, Rörig-Dalgaard I (2006) Drying brick masonry by electro-osmosis. In: Proceedings from the seventh international masonry conference, no. 31, CD-romy London, UK

  42. Atkins PW (1994) Physical chemistry, 5th edn. Oxford University Press, Oxford, p C28

    Google Scholar 

  43. Österreichisches Normungsinstitut (1999) ÖNORM B 3355-1 Trockenlegung von feuchten Mauerwerk – Bauwerksdiagnostik und Planungsgrundlagen

  44. Ottosen LM, Pedersen AJ, Rörig-Dalgaard I (2007) Salt-related problems in brick masonry and electrokinetic removal of salts. J Build Apprais 3(3):181–194

    Article  Google Scholar 

  45. Rörig-Dalgaard I, Ottosen LM (2011) Desalination of porous materials by use of buffer electrode units. EPO patent 2276716

Download references

Acknowledgments

The Foundations Realdania, Velux and Augustinus are gratefully acknowledged for financial support. Lisbeth M. Ottosen and Kurt Kielsgaard Hansen are both acknowledged for proof reading and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Rörig-Dalgaard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rörig-Dalgaard, I. Development of a poultice for electrochemical desalination of porous building materials: desalination effect and pH changes. Mater Struct 46, 959–970 (2013). https://doi.org/10.1617/s11527-012-9946-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-012-9946-7

Keywords

Navigation