Skip to main content
Log in

Diffusivity evolution under decalcification: influence of aggregate natures and cement type

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Since the decalcification of cement paste has been largely reviewed, we focus our studies on the influence of aggregate nature on this phenomenon in relation to the type of cement used, Ordinary Portland Cement or blended cement with fly ash and slag. Some characteristics of similar mortar mixtures where only aggregate nature differs (lime and siliceous sand) are therefore compared for the two types of cement before and after chemical decalcification induced by ammonium nitrate attack: mechanical strength, microstructure (porosity observed by mercury intrusion and profiles of oxide content trough degraded and sound zones determined by electronic microprobe analysis), transport properties (chloride ions diffusivity, gas and water permeabilities). The characterization of sound mortars underlines that siliceous aggregates promote less porous cementitious matrix. The duplication of ammonium nitrate attacks on same material allows testing the experimental parameters governing the degradation. The flows of calcium leached, the microstructure and the evolution of transport properties with decalcification suggest that limestone aggregates are not inert material. Consequently, for the mortars incorporating siliceous sand, the cementitious matrix is more decalcified and this leads to an amplification of ionic transports, especially through blended cement paste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adenot F, Buil M (1992) Modelling of the corrosion of the cement paste by deionized water. Cem Concr Res 22:489–496

    Article  Google Scholar 

  2. AFPC-AFREM (1997) Détermination de la masse volumique apparente et de la porosité accessible à l’eau. Méthodes recommandées pour la mesure des grandeurs associées à la durabilité. In : Compte rendu des journées techniques AFPC-AFREM, Décembre 1997, Toulouse, pp 121–124

  3. Agostini F, Lafhaj Z, Skoczylas F, Loodsveldt H (2007) Experimental study of accelerated leaching on hollow cylinders of mortars. Cem Concr Res 37:71–78

    Article  Google Scholar 

  4. Atkins M, Glasser FP, Kindness A (1992) Cement hydrate phase: solubility at 25°C. Cem Concr Res 22:241–246

    Article  Google Scholar 

  5. Bajza A, Rousekova I (1990) Properties and structure of hardened cement pastes corroded by NH4NO3 solutions. Il Cemento 1:29–46

    Google Scholar 

  6. Bamforth PM (1987) The relationship between permeability coefficients for concrete obtained using liquid and gas. Mag Concr Res 39:3–11

    Article  Google Scholar 

  7. Baroghel-Bouny V (1994) Caractérisation des pâtes de ciment et des bétons, Méthodes, analyses, interprétation. Presses de l’Ecole Nationale des Ponts et Chaussées, Paris, France (in French)

  8. Baron J, Ollivier JP (1992) La durabilité des bétons. Presses de l’Ecole Nationale des Ponts et Chaussées, Paris

    Google Scholar 

  9. Bertron A, Escadeillas G, Duchesne J (2004) Cement pastes alteration by liquid manure organic acids: chemical and mineralogical characterization. Cem Concr Res 34:1823–1835

    Article  Google Scholar 

  10. Carcassès M, Abbas A, Ollivier JP, Verdier J (2001) An optimized preconditionnal procedure for gas permeability measurement. Mater Struct 35:22–27

    Article  Google Scholar 

  11. Carde C (1996) Caractérisation et modélisation des propriétés mécaniques dues à la lixiviation des matériaux cimentaires. PhD thesis, INSA Toulouse, France (in French)

  12. Carde C, François R (1997) Effect of the leaching of calcium hydroxide from cement paste on mechanical and physical properties. Cem Concr Res 27:539–550

    Article  Google Scholar 

  13. Carde C, François R, Torrenti JM (1996) Leaching of both calcium hydroxide and C-S-H from cement paste: modelling the mechanical behaviour. Cem Concr Res 26:1257–1268

    Article  Google Scholar 

  14. Carde C, Escadeillas G, François R (1997) Use of ammonium nitrate solution to stimulate and accelerate the leaching of cement pastes due to deionised water. Mag Cem Res 49:295–301

    Article  Google Scholar 

  15. Chen JJ, Thomas JJ, Taylor HFW, Jennings HM (2004) Solubility and structure of calcium silicate hydrate. Cem Concr Res 34:1499–1519

    Article  Google Scholar 

  16. Cook DJ, Cao HT, Coan HP (1987) Pore structure development in Portland/fly ash blends. In: Struble LJ, Brown PW (eds) Symposium proceedings: microstructural development during hydration cement, vol 85. Materials Research Society, Pittsburgh, pp 201–213

    Google Scholar 

  17. Dana E (1999) Contribution à la caractérisation des écoulements biphasiques dans les matériaux poreux, Etude expérimentale sur trois grès. PhD thesis, Université de Lille I, France (in French)

  18. Day RL, Konecny L (1989) Relationship between permeability and microstructural characteristics of fly ash mortars. In: Roberts LR, Skalny JP (eds) Symposium proceedings: pore structure and permeability of cementitious materials, vol 137. Materials Research Society, Pittsburgh, pp 391–402

  19. De Larrad T, Benboudjema F, Colliat JB, Torrenti JM, Deleruelle F (2010) Concrete calcium leaching at variable temperature: experimental data and numerical model inverse identification. Comput Mater Sci 49:35–45

    Article  Google Scholar 

  20. Delagrave A, Bigas JP, Ollivier JP, Marchand J, Pigeon M (1997) Influence of the interfacial transition zone on the chloride diffusivity of mortars. Adv Cem Bas Mater 5:86–92

    Article  Google Scholar 

  21. EN 197-1 Standard (2004) Ciment—Partie 1: composition, spécifications et critères de conformité des ciments courants. P15-101-1/A1

  22. Faucon P, Le Bescop P, Adenot F, Bonville P, Jacquinot JF, Pineau F, Felix B (1996) Leaching of cement: study of the surface layer. Cem Concr Res 26:1707–1715

    Article  Google Scholar 

  23. Faucon P, Adenot F, Jacquinot JF, Petit JC, Cabrillac R (1998) Long-term behaviour of cement pastes used for nuclear waste disposal: review of physico-chemical mechanisms of water degradation. Cem Concr Res 28:847–857

    Article  Google Scholar 

  24. Haga K, Sutou S, Hironaga M, Tanaka S, Nagasaki S (2005) Effects of porosity on leaching of Ca hardened ordinary Portland cement paste. Cem Concr Res 35:1764–1775

    Article  Google Scholar 

  25. Harris AW, Manning MC, Tearl WM, Tweed CJ (2002) Testing models of the dissolution of cement-leaching of synthetic C-S-H gels. Cem Concr Res 32:731–746

    Article  Google Scholar 

  26. Heukamp FH (2002) Chemomechanics of calcium leaching of cement based materials at different scales: the role of CH dissolution and CSH degradation on strength and durability performances of materials and structure. PhD thesis, Cambridge, UK

  27. Hooton RD (1984) Permeability and pore structure of cement pastes containing fly ash, slag and silica fume. In: Frohnsdorff G (ed) Blending cement, ASTM STP 897. American Society for Testing and Materials, Philadelphia, USA, pp 128–143

  28. Kamali S (2003) Comportement et simulation des matériaux cimentaires en environnements agressifs: lixiviation et temperature. PhD thesis, École normale supérieure de Cachan, France (in French)

  29. Kearsley EP, Wainwright PJ (2001) Porosity and permeability of foamed concrete. Cem Concr Res 31:805–812

    Article  Google Scholar 

  30. Kollek JJ (1989) The determination of the permeability of concrete to oxygen gas by the Cembureau method-a recommendation. Mater Struct 22:225–230

    Article  Google Scholar 

  31. Le Bellego C (2001) Couplage chimie-mécanique dans les structures en béton attaquées par l’eau : étude expérimentale et analyse numérique. Ph.D. thesis, École normale supérieure de Cachan, France (in French)

  32. Loosveldt H, Lafhaj Z, Skoczylas F (2002) Experimental study of gas and liquid permeability of a mortar. Cem Concr Res 32:1357–1363

    Article  Google Scholar 

  33. Matte V, Moranville M (1999) Durability of reactive powder composites: influence of silica fume on the leaching properties of very low water/binder pastes. Cem Concr Compos 21:1–9

    Article  Google Scholar 

  34. Meziani H, Skoczylas F (1999) An experimental study of the mechanical behaviour of a mortar and of its permeability under deviatoric loading. Mater Struct 32:403–409

    Article  Google Scholar 

  35. Nguyen VH, Colina H, Torrenti JM, Boulay C, Nedjar B (2007) Chemo-mechanical coupling behaviour of leached concrete: part I: experimental results. Nucl Eng Des 237:2083–2089

    Article  Google Scholar 

  36. Pandey SP, Sharma RL (2000) The influence of mineral additives on the strength and porosity of OPC mortar. Cem Concr Res 30:19–23

    Article  Google Scholar 

  37. Perlot C (2005) Influence de la décalcification de matériaux cimentaires sur les propriétés de transportt: application au stockage profond de déchets radioactifs. Ph.D. thesis, Université Paul Sabatier, Toulouse, France and Université de Sherbrooke, Canada (in French)

  38. Perlot C, Bourbon X, Carcassès M, Ballivy G (2007) The adaptation of an experimental protocol to the durability of cement engineered barriers for nuclear waste storage. Mag Concr Res 29:311–322

    Article  Google Scholar 

  39. Rahman MM, Nagasaki S, Tanaka S (1999) A model for dissolution of CaO-SiO2-H2O gel at Ca/Si > 1. Cem Concr Res 29:1091–1097

    Article  Google Scholar 

  40. Rervertegat E, Richet C, Gegout P (1992) Effect of pH on the durability of cement pastes. Cem Concr Res 22:259–272

    Article  Google Scholar 

  41. Richardson IG (1999) The nature of C-S-H in hardened cements. Cem Concr Res 29:1131–1147

    Article  Google Scholar 

  42. Schneider U, Chen SW (2003) Influence of concentration of ammonium nitrate solutions on concrete. In: Proceedings of the 6th CANMET/ACI international conference on durability of concrete, Thessalonica, Greece, pp 439–447

  43. Scrivener KL, Nemati KM (1996) The percolation of pore space in the cement paste/aggregate interfacial zone of concrete. Cem Concr Res 26:35–40

    Article  Google Scholar 

  44. Thomas MDA, Bamforth PM (1999) Modelling chloride diffusion in concrete. Effect of fly ash and slag. Cem Concr Res 29:487–495

    Article  Google Scholar 

  45. Truc O, Ollivier JP, Carcassès M (2000) A new way for determining the chloride diffusion coefficient in concrete from steady state migration test. Cem Concr Res 30:217–226

    Article  Google Scholar 

  46. Withing D (1998) In: Withing D, Walitt A (eds) Permeability of selected concretes. ACI, Detroit, pp 195–222

  47. Wong HS, Buenfeld ND, Head MK (2006) Estimating transport properties of mortars using image analysis on backscattered electron images. Cem Concr Res 36:1556–1566

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude for the financial support provided by the National Agency for Radioactive Waste Management (ANDRA), and to the laboratories if LMDC and University of Sherbrooke where the tests were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Perlot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perlot, C., Carcassès, M. & Verdier, J. Diffusivity evolution under decalcification: influence of aggregate natures and cement type. Mater Struct 46, 787–801 (2013). https://doi.org/10.1617/s11527-012-9934-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-012-9934-y

Keywords

Navigation