Skip to main content
Log in

Diagonal compressive strength of masonry samples—experimental and numerical approach

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Masonry is a structural material that presents a quite complex behaviour that depends on the mechanical and geometrical characteristics of the units, the mortar and the link between these two elements. In particular, the characterization of the shear behaviour of masonry elements involves proper experimental campaigns that make these analyses particularly expensive. The main objective of this paper is to present a case study on the characterization of the shear behaviour of masonry through a methodology that merges a small number of laboratory tests with computer simulations. The methodology is applied to a new masonry system that has recently been developed in Portugal, and involves a FEM numerical approach based on micro3D modelling of masonry samples using nonlinear behaviour models that are calibrated through a small number of laboratory tests. As a result, the characterization of the masonry shear behaviour trough this methodology allowed simulating, with reasonably accuracy, a large set of expensive laboratory tests using numerical tools calibrated with small experimental resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Abbreviations

A n :

Net area of masonry sample

B :

Height of the masonry sample

D :

Isotropic scalar degradation variable

d c :

Compressive damage variable

d max :

Maximum aggregate size

\( D_{0}^{\text{el}} \) :

Initial (undamaged) elastic stiffness

d t :

Tensile damage variable

e :

Thickness of the mortar parallel joints

E 0 :

Modulus of elasticity

F :

Compression load

f l :

Tensile flexural strength

F max :

Maximum compression load

F max :

Maximum compression load

G p :

Potential plastic flow

g :

Full width of the mortar strips

G :

Shear modulus

G F :

Fracture energy

G Fo :

Base value of the fracture energy

H :

Length of the masonry sample

h s :

Depth of a sample

K c :

Ratio between the tensile and compressive stress invariants at initial yield

L :

Distance between measurement points of ∆v and ∆h

N :

Percentage of gross area of the unit that is solid

\( \bar{p} \) :

Effective hydrostatic pressure

\( \bar{q} \) :

Von Mises equivalent effective stress

R 2 :

Coefficient of determination

s c :

Weight factor to control the recovery of the compressive stiffness

s t :

Weight factor to control the recovery of the tensile stiffness

t :

Total thickness of the wall

α i , β i , γ i :

Adimensional parameters

γ:

Shear strain

γmax :

Shear strain for the τmax

h :

Horizontal extensions

v :

Vertical shortening

ε:

Total strain

εcu :

Strain for σcu or ultimate strain

εc,limit :

Limit compressive strain

εel :

Elastic strain

εc :

Compression strain

εmax :

Strain of masonry for the F max

εpl :

Plastic strain

\( \tilde{\varepsilon }^{\text{pl}} \) :

Multi-axial equivalent plastic strain

\( \tilde{\varepsilon }_{\text{c}}^{\text{pl}} \) :

Compressive equivalent plastic strain

\( \tilde{\varepsilon }_{\text{t}}^{\text{pl}} \) :

Tensile plastic strain

εt :

Tensile strain

ν :

Poisson coefficient

σ:

Cauchy stress

\( \bar{\sigma } \) :

Effective stress

σb0 :

Initial equi-biaxial compressive yield stress

σc :

Uniaxial compression stress

\( \bar{\sigma }_{\text{c}} \) :

Compressive effective stresses

σc0 :

Initial uniaxial compressive yield stress

σcu :

Compressive strength (maximum compression stress)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\bar{\sigma }}_{\max } \) :

Maximum principal effective stress (algebraic value)

σt :

Uniaxial tensile stress

\( \bar{\sigma }_{\text{t}} \) :

Tensile effective stresses

σto :

Uniaxial tensile strength

τ:

Shear stress

τmax :

Shear strength or maximum shear stress

ψ:

Dilation angle

∈:

Parameter that defines the rate at which G p approaches the asymptote

References

  1. ASTM E 519-02 (2002) Standard test method for diagonal tension (shear) in masonry assemblages. American Society for Testing and Materials, West Conshohocken

  2. Barbosa CS, Lourenço PB, Hanai JB (2010) On the compressive strength prediction for concrete masonry prisms. Mater Struct 43:331–344. doi:10.1617/s11527-009-9492-0

    Article  Google Scholar 

  3. Berto L, Saetta A, Scotta R, Vitaliani R (2004) Shear behaviour of masonry panel: parametric FE analyses. Int J Solids Struct 41:4383–4405. doi:10.1016/j.ijsolstr.2004.02.046

    Article  MATH  Google Scholar 

  4. Brasile S, Casciaro R, Formica G (2010) Finite Element formulation for nonlinear analysis of masonry walls. Comput Struct 88:135–143. doi:10.1016/j.compstruc.2009.08.006

    Article  Google Scholar 

  5. Calderini C, Cattari S, Lagomarsino S (2010) The use of the diagonal compression test to identify the shear mechanical parameters of masonry. Constr Build Mater 24:677–685. doi:10.1016/j.conbuildmat.2009.11.001

    Article  Google Scholar 

  6. CEB (1990) Model Code 1990: design code. Thomas Telford, Lausanne

    Google Scholar 

  7. Chaimoon K, Attard M (2007) Modeling of unreinforced masonry walls under shear and compression. Eng Struct 29(3):2056–2068. doi:10.1016/j.engstruct.2006.10.019

    Article  Google Scholar 

  8. da Porto F, Mosele F, Modena C (2011) Compressive behaviour of a new reinforced masonry system. Mater Struct 44:565–581. doi:10.1617/s11527-010-9649-x

    Article  Google Scholar 

  9. da Porto F, Mosele F, Modena C (2011) In-plane cyclic behaviour of a new reinforced masonry system: experimental results. Eng Struct 33:2584–2596. doi:10.1016/j.engstruct.2011.05.003

    Article  Google Scholar 

  10. Díaz JJ, Nieto PJ, Rabanal FP, Martínez-Luengas AL (2011) Design and shape optimization of a new type of hollow concrete masonry block using the finite element method. Eng Struct 33:1–9. doi:10.1016/j.engstruct.2010.09.012

    Article  Google Scholar 

  11. Drysdale RG, Hamid AA, Baker LR (1999) Masonry structures: behaviour and design, 2nd edn. The Masonry Society, Boulder

    Google Scholar 

  12. EN 1015-11 (1999) Methods of test for mortar masonry—part 11: determination of flexural and compressive strength of hardened mortar. European Committee for Standardization, Brussels

  13. EN 1996-1-1 (2005) Eurocode 6—design of masonry structures. Part 1-1: general rules for reinforced and unreinforced masonry structures. European Committee for Standardization, Brussels

  14. EN 772-1 (2000) Methods of test for masonry units. Part 1: determination of compressive strength. European Committee for Standardization, Brussels

  15. Faria R, Oliver J, Cervera M (1998) A strain-based viscous-plastic-damage model for massive concrete structures. Int J Solids Struct 35(14):1533–1558

    Article  MATH  Google Scholar 

  16. Fouchal F, Lebon F, Titeux I (2009) Contribution to the modelling of interfaces in masonry construction. Constr Build Mater 23:2428–2441. doi:10.1016/j.conbuildmat.2008.10.011

    Article  Google Scholar 

  17. Gabor A, Ferrier E, Jacquelin E, Hamelin P (2006) Analysis and modelling of the in-plane shear behaviour of hollow brick masonry panels. Constr Build Mater 20:308–321. doi:10.1016/j.conbuildmat.2005.01.032

    Article  Google Scholar 

  18. Hamid A, Mahmoud A, Sherif E (1994) Strengthening and repair of masonry structures: State of the art. In: Proceedings of the 10th international brick and block masonry conference, Calgary, Canada, pp 485–494

  19. Hendry EAW (2001) Masonry walls: materials and construction. Constr Build Mater 15:323–330

    Article  Google Scholar 

  20. Hilleborg A, Modeer M, Petersson P (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6:773–782

    Article  Google Scholar 

  21. Jankowiak T, Lodygowski T (2005) Identification of parameters of concrete damage plasticity constitutive model. Found Civ Environ Eng 6:53–69. ISSN: 1642-9303

    Google Scholar 

  22. Kupfer H, Hilsdorf HK, Rusch H (1969) Behaviour of concrete under bi-axial stresses. ACI J Proc 66(8):656–666

    Google Scholar 

  23. Lee J, Fenves G (1998) Plastic-damage model for cyclic loading of concrete structures. J Eng Mech 124(8):892–900

    Article  Google Scholar 

  24. Lemos JV (2007) Discrete element modelling of masonry structures. Int J Archit Herit 1(2):190–213. doi:10.1080/15583050601176868

    Article  Google Scholar 

  25. Lourenço P, Rots J (1997) Multisurface interface model for analysis of masonry structures. J Eng Mech 123(7):660–668

    Article  Google Scholar 

  26. Lourenço PB, Vasconcelos G, Medeiros P, Gouveia J (2010) Vertically perforated clay brick masonry for loadbearing and non-loadbearing masonry walls. Constr Build Mater 24:2317–2330. doi:10.1016/j.conbuildmat.2010.04.010

    Article  Google Scholar 

  27. Lubliner J, Oliver J, Oller S, Oñate E (1989) A plastic-damage model for concrete. Int J Solid Struct 25(3):299–326

    Article  Google Scholar 

  28. Mistler M, Anthoine A, Butenweg C (2007) In-plane and out-of-plane homogenisation of masonry. Comput Struct 85:1321–1330. doi:10.1016/j.compstruc.2006.08.087

    Article  Google Scholar 

  29. Mosele F, da Porto F (2011) Innovative clay unit reinforced masonry system: testing, design and applications in Europe. Procedia Eng 14:2109–2116. doi:10.1016/j.proeng.2011.07.265

    Article  Google Scholar 

  30. Neville A (1995) Properties of concrete, 4th edn. Longman Scientific and Technical, Harlow

    Google Scholar 

  31. Oliveira FL, Hanai JB (2005) Reabilitação de paredes de alvenaria pela aplicação de revestimentos resistentes de argamassa armada (in Portuguese). Cad Eng Struct 7(26):131–164. ISSN 1809-5860

    Google Scholar 

  32. Pelà L, Cervera M, Roca P (2011) Continuum damage model for orthotropic materials: application to masonry. Comput Methods Appl Mech Eng 200:917–930. doi:10.1016/j.cma.2010.11.010

    Article  MATH  Google Scholar 

  33. Quinteros RD, Oller S, Nallim LG (2012) Nonlinear homogenization techniques to solve masonry structures problems. Compos Struct 94(2):724–730. doi:10.1016/j.compstruct.2011.09.006

    Article  Google Scholar 

  34. Sousa R, Sousa H (2010) Experimental evaluation of some mechanical properties of large lightweight concrete and clay masonry and comparison with EC6 expressions. In: Proceedings of the 8th international masonry conference, Dresden, Germany, pp 545–554

  35. Sousa R, Sousa H (2011) Influence of head joints and unreinforced rendering on shear behaviour of lightweight concrete masonry. In: Proceedings of the 9th Australasian masonry conference, Queenstown, New Zealand, pp 515–522

  36. Sousa LC, Castro CF, António CC, Sousa H (2011) Topology optimisation of masonry units from the thermal point of view using a genetic algorithm. Constr Build Mater 25(5):2254–2262. doi:10.1016/j.conbuildmat.2010.11.010

    Article  Google Scholar 

  37. Tao X, Phillips DV (2005) A simplified isotropic damage model for concrete under bi-axial stress states. Cem Concr Compos 27:716–726. doi:10.1016/j.cemconcomp.2004.09.017

    Article  Google Scholar 

  38. Uva G, Salerno G (2006) Towards a multiscale analysis of periodic masonry brickwork: a FEM algorithm with damage and friction. Int J Solid Struct 43:3739–3769. doi:10.1016/j.ijsolstr.2005.10.004

    Article  MATH  Google Scholar 

  39. Veiga M (1997) Comportamento de argamassas de revestimento de paredes: Contribuição para o estudo da sua resistência à fendilhação (in portuguese). PhD Dissertation, University of Porto

  40. Vyas ChVU, Reddy BVV (2010) Prediction of solid block masonry prism compressive strength using FE model. Mater Struct 43:719–735. doi:10.1617/s11527-009-9524-9

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledged ADI-Portuguese Innovation Agency and the Company Maxit-Portugal for the help provided in the OTMAPS research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Sousa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sousa, R., Sousa, H. & Guedes, J. Diagonal compressive strength of masonry samples—experimental and numerical approach. Mater Struct 46, 765–786 (2013). https://doi.org/10.1617/s11527-012-9933-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-012-9933-z

Keywords

Navigation