Skip to main content
Log in

Optical method for measuring slow crack growth in cementitious materials

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The double-torsion (DT) test is commonly used to calculate slow or subcritical crack velocities in (quasi-)brittle engineering materials directly from the measured load relaxation of notched DT-specimens. In cementitious materials a significant part of the recorded load relaxation in the DT-test may be due to specimen creep deformation, and this would then lead to overestimated crack velocities. In this paper we describe a method to optically measure slow crack growth in cementitious materials by carrying out DT-tests under the optical microscope or inside the environmental SEM. Crack tip detection is facilitated by digital image correlation of the time-lapse microscope recordings. DT-tests at 10 % relative humidity in hardened cement paste (with w/c-ratio of 0.4, 0.5 and 0.6) showed that optically measured crack velocities were significantly lower than those calculated from the DT-specimen relaxation. In many experiments the subcritical crack growth rapidly stopped, while an ongoing specimen load relaxation was recorded. At 90 % relative humidity, load-relaxation in the DT-test was much stronger than at 10 % relative humidity, because subcritical cracking and creep-induced relaxation both increase with moisture content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mindess S (1985) Rate of loading effects on the fracture of cementitious materials. In: Shah SP (ed) Application of fracture mechanics to cementitious composites. Martinus Nijhoff, The Netherlands, pp 617–638

  2. Wittmann FH (1985) Influence of time on crack formation and failure of concrete. In: Shah SP (ed) Application of fracture mechanics to cementitious composites. Martinus Nijhoff, The Netherlands, pp 593–616

  3. Bažant ZP, Gettu R (1992) Rate effects of and load relaxation in static fracture of concrete. ACI Mat J 89:456–468

    Google Scholar 

  4. Bažant ZP, Xiang Y (1997) Crack growth and lifetime of concrete under long time loading. J Eng Mech 123:350–358

    Article  Google Scholar 

  5. Van Zijl GPAG, De Borst R, Rots JG (2001) The role of crack rate dependence in the long-term behaviour of cementitious materials. Int J Solids Struct 38:5063–5079

    Article  MATH  Google Scholar 

  6. Bažant ZP, Gu WH, Faber KT (1995) Softening reversal and other effect of a change in loading rate on fracture of concrete. ACI Mater J 92:3–9

    Google Scholar 

  7. Wiederhorn SM, Freiman SW, Fuller ER, Simmons CJ (1982) Effects of water and other dielectrics on crack growth. J Mater Sci 17:3460–3478

    Article  Google Scholar 

  8. Freiman SW (1984) Effect of chemical environments on slow crack-growth in glasses and ceramics. J Geophys Res 89(NB6):4072–4076

    Article  Google Scholar 

  9. Atkinson BK (1984) Subcritical crack growth in geological materials. J Geophys Res 89(B6):4077–4114

    Article  Google Scholar 

  10. Stöckl S (1967) Tastversuche über den Einfluss von vorangegangen Dauerlasten auf die Kurzzeitfestigkeit des Betons, Deutscher Ausschuss für Stahlbeton No. 196:1–27

  11. Shah SP, Chandra S (1970) Fracture of concrete subjected to cyclic and sustained loading. J Am Concr I 67:816–825

    Google Scholar 

  12. Hughes BP, Ash JE (1970) Some factors influencing the long-term strength of concrete. Mater Struct 3:81–84

    Google Scholar 

  13. Coutinho AS (1977) A contribution to the mechanism of concrete creep. Mater Struct 1:3–16

    Google Scholar 

  14. Nadeau JS, Mindess S, Hay JM (1974) Slow crack growth in cement paste. J Am Ceram Soc 57:51–54

    Article  Google Scholar 

  15. Mindess S, Nadeau JS, Hay JM (1974) Effect of different curing conditions on slow crack growth in cement paste. Cem Concr Res 4:953–965

    Article  Google Scholar 

  16. Evans AG, Clifton JR, Anderson E (1976) The fracture mechanics of mortars. Cem Concr Res 6:535–548

    Article  Google Scholar 

  17. Beaudoin JJ (1985) Effect of humidity on subcritical crack growth in cement paste. Cem Concr Res 15:871–878

    Article  Google Scholar 

  18. Beaudoin JJ (1985) Effect of water and other dielectrics on subcritical crack growth in Portland cement paste. Cem Concr Res 15:988–994

    Article  Google Scholar 

  19. Denarié E, Cécot C, Huet C (2006) Characterization of creep and crack growth interactions in the fracture behaviour of concrete. Cem Concr Res 36:571–575

    Article  Google Scholar 

  20. Wecharatana M, Shah SP (1980) Double torsion tests for studying slow crack-growth of Portland cement mortar. Cem Concr Res 10:833–844

    Article  Google Scholar 

  21. Husak AD, Krokosky EM (1971) Static fatigue of hydrated cement concrete. J Am Concr I 68:263–271

    Google Scholar 

  22. Barrick JE, Krokosky EM (1976) The effects of temperature and relative humidity on static strength of hydrated Portland cement. J Test Eval 4:61–73

    Article  Google Scholar 

  23. Beaudoin JJ (1982) Effect of humidity and porosity on fracture of hardened Portland cement. Cem Concr Res 12:705–716

    Article  Google Scholar 

  24. Rossi P, Boulay C (1990) Influence of free water in concrete on the cracking process. Mag Concr Res 42:143–146

    Article  Google Scholar 

  25. Bažant ZP, Prat PC (1999) Effect of temperature and humidity on fracture energy of concrete. ACI Mater J 85:262–271

    Google Scholar 

  26. Wittmann FH (1970) Einfluss des Feuchtigkeitsgehaltes auf das Kriechen des Zemensteins. Rhelo Acta 9:282–287

    Article  Google Scholar 

  27. Bažant ZP, Asghari AA, Schmidt J (1976) Experimental study of creep of hardened Portland cement paste at variable water content. Mater Struct 9:279–290

    Google Scholar 

  28. Neville AM, Dilger WH, Brooks JJ (1983) Creep of plain and structural concrete. Construction Press, London, New York, p 361

  29. Mindess S, Diamond S (1980) A preliminary SEM study of crack propagation in mortar. Cem Concr Res 10:509–519

    Article  Google Scholar 

  30. Mindess S, Diamond S (1982) A device for direct observation of cracking of cement paste or mortar under compressive loading within a scanning electron microscope. Cem Concr Res 12:569–576

    Article  Google Scholar 

  31. Diamond S, Mindess S, Lovell J (1983) Use of a Robinson backscatter detector and “wet cell” for examination of wet cement paste and mortar specimens under load. Cem Concr Res 13:107–113

    Article  Google Scholar 

  32. Diamond S, Bentur A (1985) On the cracking in concrete and fiber-reinforced cements. In: Shah SP (ed) Application of fracture mechanics to cementitious composites. Martinus Nijhoff, The Netherlands, pp 87–140

  33. Tait RB, Garrett GG (1986) In situ double torsion fracture studies of cement mortar and cement paste inside a scanning electron microscope. Cem Concr Res 16:143–155

    Article  Google Scholar 

  34. Williams DP, Evans AG (1973) A simple method for studying slow crack growth. J Test Eval 1:264–270

    Article  Google Scholar 

  35. Bažant ZP, Raftshol WJ (1982) Effect of cracking in drying and shrinkage specimens. Cem Concr Res 12:209–226

    Article  Google Scholar 

  36. Bisschop J, Wittel F (2010) Contraction gradient induced microcracking in hardened cement paste. Cem Concr Comp. doi:10.1016/j.cemconcomp.2011.02.004

  37. Fuller ER (1979) An evaluation of double-torsion testing-analysis. Fract Mech Appl Brittle Mater: 3–18

  38. Choi S, Shah SP (1997) Measurement of deformations on concrete subjected to compression using image correlation. Exp Mech 37:307–313

    Article  Google Scholar 

  39. Hild F, Roux S (2006) Digital image correlation: from displacement measurement to identification of elastic properties: a review. Strain 42:69–80

    Article  Google Scholar 

  40. Bažant ZP, Bai SP, Gettu R (1993) Fracture of rock: effect of loading rate. Eng Fract Mech 45:393–398

    Article  Google Scholar 

  41. Atkinson BK, Meredith PG (1987) The theory of subcritical crack growth with applications to minerals and rocks. In: Atkinson BK (ed) Fracture mechanics of rock. Academic Press, London

  42. Røyne A, Bisschop J, Dysthe DK (2011) Experimental investigation of surface energy and subcritical crack growth in calcite. J Geoph Res B-Solid Earth. doi:10.1029/2010JB008033

  43. Shyam A, Lara-Curzio A (2006) The double-torsion testing technique for determination of fracture toughness and slow crack growth behavior of materials: a review. J Mater Sci 41:4093–4104

    Article  Google Scholar 

  44. Evans AG, Wiederhorn SM (1984) Proof testing of ceramic materials: an analytical basis for failure prediction. Int J Fract 26:355–368

    Article  Google Scholar 

  45. Evans AG (1973) A simple method for evaluating slow crack growth in brittle materials. Int J Fract 9:267–275

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mariano Pauli, Ernst Bleiker, Heinz Richner, Gabriele Peschke, Carsten Rieger, Dominik Meyer, Robert Flatt for their assistance in this project. This project was financed by the Swiss National Science Foundation (SNF), project nr. 200021-119787.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, W., Bisschop, J. Optical method for measuring slow crack growth in cementitious materials. Mater Struct 45, 1613–1623 (2012). https://doi.org/10.1617/s11527-012-9860-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-012-9860-z

Keywords

Mathematical Subject Classification

Navigation