Skip to main content

Inductive method for assessing the amount and orientation of steel fibers in concrete

Abstract

Steel fibers are ferromagnetic and they have the property of altering the magnetic field around them. This paper discusses a method and gives a practical example to measure, non-destructively, the amount and orientation of fibers from cubic concrete specimens (150 mm). This is possible because the fibers affect inductance of a sensor (an inductive coil) that is wrapped around the specimen.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Aguado A, Laranjeira F (2007) Presentación del anejo de hormigón con fibras de la EHE y ecuación constitutiva del hormigón con fibras. Cátedra BMB-UPC: Aplicaciones estructurales de hormigón con fibras. Barcelona, 2007

  2. 2.

    Barragán BE (2002) Failure and toughness of steel fiber reinforced concrete under tension and shear, PhD Thesis, Universitat Politècnica de Catalunya

  3. 3.

    Blanco A, Pujadas P, de la Fuente A, Aguado A (2010) Análisis comparativo de los modelos constitutivos del hormigón reforzado con fibras. Hormigón y Acero 61(256):83–101

    Google Scholar 

  4. 4.

    Blanco A (2008) Durabilidad del hormigón con fibras de acero, Minor thesis, Universitat Politècnica de Catalunya

  5. 5.

    Dozio D (2008) SFRC structures: Identification of the uniaxial tension characteristic constitutive law, PhD Thesis, Politecnico di Milano

  6. 6.

    Dupont D, Vandewalle L (2005) Distribution of steel fibres in rectangular sections. Cem Concr Compos 27:391–398

    Article  Google Scholar 

  7. 7.

    Edington J, Hannant DJ (1972) Steel fibre reinforced concrete. The effect on fibre orientation of compaction by vibration. Mater Struct 5(25):41–44

    Google Scholar 

  8. 8.

    Faifer M, Ottoboni R, Toscani S, Ferrara L (2010) Steel fiber reinforced concrete characterization based on a magnetic probe, Instrumentation and Measurement Technology Conference (I2MTC), IEEE: 157–162

  9. 9.

    Ferrara L, Park Y, Shah SP (2008) Correlation among fresh state behavior. Fiber dispersion and toughness properties of SFRCs. J Mater Civ Eng 20(7):493–501

    Article  Google Scholar 

  10. 10.

    Gettu R, Gardner DR, Saldívar H, Barragán BE (2005) Study of the distribution and orientation of fibers in SFRC specimens. Mater Struct 38(1):31–37

    Article  Google Scholar 

  11. 11.

    Grünewald S (2004) Performance-based design of self-compacting fibre reinforced concrete, PhD Thesis, Delft University of Technology

  12. 12.

    Hoy CW (1998) Mixing and mix proportioning of fibre reinforced concrete, PhD Thesis, University of Paisley

  13. 13.

    Kameswara Rao CVS (1979) Effectiveness of random fibres in composites. Cem Concr Res 9:685–693

    Google Scholar 

  14. 14.

    Kooiman AG (2000) Modelling steel fibre reinforced concrete for structural design, PhD Thesis, Delft University of Technology

  15. 15.

    Krenchel H (1975) Fibre spacing and specific fibre surface. In: Neville A (ed) Fibre reinforced cement and concrete. The Construction Press, UK, pp 69–79

    Google Scholar 

  16. 16.

    Lambrechts A (2008) Performance classes for steel fibre reinforced concrete: be critical. In: BEFIB 2008: 7th RILEM international symposium on fibre reinforced concrete. RILEM Publications SARL, pp 1007–1020

  17. 17.

    Lappa L (2007) High strength fibre reinforced concrete: static and fatigue behavior in bending, PhD Thesis, Delft University of Technology

  18. 18.

    Laranjeira F (2010) Design-oriented constitutive model for steel fiber reinforced concrete, PhD Thesis, Universitat Politècnica de Catalunya

  19. 19.

    Laranjeira F, Aguado A, Molins C (2010) Predicting the pullout response of inclined straight steel fibers. Mater Struct 43(6):875–895

    Article  Google Scholar 

  20. 20.

    Laranjeira F, Molins C, Aguado A (2010) Predicting the pullout response of inclined hooked steel fibers. Cem Concr Res 40:1471–1487

    Article  Google Scholar 

  21. 21.

    Laranjeira F, Grünewald S, Walraven J, Blom C, Molins C, Aguado A (2010c) Characterization of the orientation profile of steel fiber reinforced concrete. Mater Struct

  22. 22.

    Lataste JF, Behloul M, Breysse D (2008) Characterisation of fibres distribution in a steel fibre reinforced concrete with electrical resistivity measurements. NDT&E Int 41:638–647

    Article  Google Scholar 

  23. 23.

    Markovic I (2006) High-performance hybrid-fibre concrete: development and utilisation, PhD Thesis, Delft University of Technology

  24. 24.

    Martinie L, Rossi P, Roussel N (2010) Rheology of fiber reinforced cementitious materials: classification and prediction 40(2):226–234

    Google Scholar 

  25. 25.

    Molins C, Martinez J, Arnáiz N (2008) Distribución de fibras de acero en probetas prismáticas de hormigón. In: CD-ROM from the 4th international structural concrete congress (ACHE), Valencia, Spain

  26. 26.

    Molins C, Aguado A, Saludes S (2009) Double punch test to control the tensile properties of FRC (Barcelona test). Rev. Mater Struct (RILEM) 42(4):415–425

    Google Scholar 

  27. 27.

    NBN B 15-238 (1992) Essais des bétons renforcés de fibres-Essai de flexion sur éprouvettes prismatiques

  28. 28.

    Nuclear Energy Agency, Committee on The Safety of Nuclear Installations (1998) Development priorities for Non-Destructive Examination of Concrete Structures in Nuclear Plant. Nea/Csni/R(98)6

  29. 29.

    Ozyurt N, Mason TO, Shah SP (2006) Non-destructive monitoring of fiber orientation using AC-IS: an industrial-scale application. Cem Concr Res 36:1653–1660

    Article  Google Scholar 

  30. 30.

    Pujadas P (2008) Durabilidad del hormigón con fibras de polipropileno, Minor Thesis, Universitat Politècnica de Catalunya

  31. 31.

    Pujadas P, Blanco A, de la Fuente A, Aguado A (2011) Cracking behaviour of FRC slabs with traditional reinforcement. Mater Struct. doi:10.1617/s11527-011-9791-0)

  32. 32.

    Robins PJ, Austin SA, Jones PA (2003) Spatial distribution of steel fibres in sprayed and cast concrete. Mag Concr Res 55(3):225–235

    Article  Google Scholar 

  33. 33.

    Romualdi JP, Mandel JA (1964) Tensile strength of concrete affected by uniformly distributed and closely spaced short lengths of wire reinforcement. ACI J 61(6):27–37

    Google Scholar 

  34. 34.

    Roqueta G, Romeu J, Jofre L (2009) Electromagnetic modeling and characterization of steel fiber reinforced concrete during the pouring process. In: Antennas and Propagation Society International Symposium, 2009. APSURSI ‘09. IEEE: 1–4

  35. 35.

    Serna P, Arango S, Ribeiro T, Núñez AM, Garcia-Taengua E (2009) Structural cast-in-place FRC: technology, control criteria and recent applications in Spain. Mater Struct 42(9):1233–1246

    Article  Google Scholar 

  36. 36.

    Sihvola AH, Lindell IV (1992) Effective Permeability of Mixtures. Progress In Electromagnetics Research, PIER 06: 153–180. http://www.jpier.org/PIER/pier.php?volume=06. Accessed 5 Jan 2012

  37. 37.

    Soroushian P, Lee C (1990) Distribution and orientation of fibers in steel fiber reinforced concrete. ACI Mater J 87(5):433–439

    Google Scholar 

  38. 38.

    Stälhi P (2008) Ultra-fluid, oriented hybrid-fibre-concrete, PhD Thesis, Institute for Building Materials ETH Zürich

  39. 39.

    Stälhi P, Custer R, van Mier JGM (2008) On flow properties, fibre distribution, fibre orientation and flexural behaviour of FRC. Mater Struct 41:189–196

    Google Scholar 

  40. 40.

    Stroeven P (1999) Steel fibre reinforcement at boundaries in concrete elements. In: Proceedings of the 3rd international workshop on high performance fiber reinforced cement composites (HPFRCC3), Mainz, Germany, pp 413–421

  41. 41.

    Torrents JM, Juan-García P, Patau O, Aguado A (2009) Surveillance of steel fibre reinforced concrete slabs measured with an open-ended coaxial probe. In: Proceedings of the XIX IMEKO world congress: fundamental and applied metrology, Lisbon, Portugal, pp 2282–2284. http://www.imeko2009.it.pt/Papers/FP_633.pdf. Accessed 5 Jan 2012

  42. 42.

    Torrijos MC, Tobes JM, Barragán BE, Zerbino RL (2008) Orientation and distribution of steel fibres in self-compacting concrete. In: Proceedings of the 7th RILEM symposium on fibre reinforced concrete: design and applications (BEFIB 2008), Chennai, India, pp 729–738

  43. 43.

    Toujanji H, Bayasi Z (1998) Effects of manufacturing techniques on the flexural behavior of steel fiber-reinforced concrete. Cem Concr Res 28(1):115–124

    Article  Google Scholar 

  44. 44.

    UNE 83512-1 (2005) Hormigones con fibras. Determinación del contenido de fibras de acero. AENOR, Madrid

  45. 45.

    Van Damme S, Franchois A, De Zutter D, Taerwe L (2004) Nondestructive determination of the steel fiber content in concrete slabs UIT an open-ended coaxial probe. IEEE Trans Geosci Remote Sens 42(11):2511–2521

    Article  Google Scholar 

  46. 46.

    Vandewalle L, Heirman G, van Rickstal F (2008) Fibre orientation in self-compacting fibre reinforced concrete. In: Proceedings of the 7th RILEM symposium on fibre reinforced concrete: design and applications (BEFIB 2008), Chennai, India, pp 719–728

  47. 47.

    Van Gysel A (2000) Studie van het uittrekgedrag van staalvezels ingebed in een cementgebonden matrix met toepassing op staalvezelbeton onderworpen aan buiging, PhD Thesis, Gent University

  48. 48.

    UNE EN 14651 (2005) Test method for metallic fibrered concrete—measuring the flexural tensile strength (limit of proportionality (LOP), residual)

Download references

Acknowledgments

The authors wish to thank the companies FCC, S.A. (HATCONS Project), PROMSA, ESCOFET and CEMEX for their partial financing and their participation in the experimental campaigns carried out. The authors also wish to thank the Ministry of Science and Innovation (MCINN) on the grounds of the CONSFIB project (reference: BIA 1010-17478). The second and the third authors wish to express their acknowledgement to the Comissionat per a Universitats del DIUE de la Generalitat de Catalunya i del Fons Social Europeu for the FI grant and to the Polytechnic University of Catalonia for the FPI-UPC grant, respectively. The same authors are also grateful for the support provided by the Col·legi d’Enginyers de Camins, Canals i Ports de Catalunya.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Josep M. Torrents.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Torrents, J.M., Blanco, A., Pujadas, P. et al. Inductive method for assessing the amount and orientation of steel fibers in concrete. Mater Struct 45, 1577–1592 (2012). https://doi.org/10.1617/s11527-012-9858-6

Download citation

Keywords

  • Non-destructive methods
  • Magnetism
  • Inductive method
  • Steel fiber reinforced concrete (SFRC)