Materials and Structures

, Volume 45, Issue 10, pp 1577–1592 | Cite as

Inductive method for assessing the amount and orientation of steel fibers in concrete

  • Josep M. Torrents
  • Ana Blanco
  • Pablo Pujadas
  • Antonio Aguado
  • Pablo Juan-García
  • Miguel Ángel Sánchez-Moragues
Original Article

Abstract

Steel fibers are ferromagnetic and they have the property of altering the magnetic field around them. This paper discusses a method and gives a practical example to measure, non-destructively, the amount and orientation of fibers from cubic concrete specimens (150 mm). This is possible because the fibers affect inductance of a sensor (an inductive coil) that is wrapped around the specimen.

Keywords

Non-destructive methods Magnetism Inductive method Steel fiber reinforced concrete (SFRC) 

References

  1. 1.
    Aguado A, Laranjeira F (2007) Presentación del anejo de hormigón con fibras de la EHE y ecuación constitutiva del hormigón con fibras. Cátedra BMB-UPC: Aplicaciones estructurales de hormigón con fibras. Barcelona, 2007Google Scholar
  2. 2.
    Barragán BE (2002) Failure and toughness of steel fiber reinforced concrete under tension and shear, PhD Thesis, Universitat Politècnica de CatalunyaGoogle Scholar
  3. 3.
    Blanco A, Pujadas P, de la Fuente A, Aguado A (2010) Análisis comparativo de los modelos constitutivos del hormigón reforzado con fibras. Hormigón y Acero 61(256):83–101Google Scholar
  4. 4.
    Blanco A (2008) Durabilidad del hormigón con fibras de acero, Minor thesis, Universitat Politècnica de CatalunyaGoogle Scholar
  5. 5.
    Dozio D (2008) SFRC structures: Identification of the uniaxial tension characteristic constitutive law, PhD Thesis, Politecnico di MilanoGoogle Scholar
  6. 6.
    Dupont D, Vandewalle L (2005) Distribution of steel fibres in rectangular sections. Cem Concr Compos 27:391–398CrossRefGoogle Scholar
  7. 7.
    Edington J, Hannant DJ (1972) Steel fibre reinforced concrete. The effect on fibre orientation of compaction by vibration. Mater Struct 5(25):41–44Google Scholar
  8. 8.
    Faifer M, Ottoboni R, Toscani S, Ferrara L (2010) Steel fiber reinforced concrete characterization based on a magnetic probe, Instrumentation and Measurement Technology Conference (I2MTC), IEEE: 157–162Google Scholar
  9. 9.
    Ferrara L, Park Y, Shah SP (2008) Correlation among fresh state behavior. Fiber dispersion and toughness properties of SFRCs. J Mater Civ Eng 20(7):493–501CrossRefGoogle Scholar
  10. 10.
    Gettu R, Gardner DR, Saldívar H, Barragán BE (2005) Study of the distribution and orientation of fibers in SFRC specimens. Mater Struct 38(1):31–37CrossRefGoogle Scholar
  11. 11.
    Grünewald S (2004) Performance-based design of self-compacting fibre reinforced concrete, PhD Thesis, Delft University of TechnologyGoogle Scholar
  12. 12.
    Hoy CW (1998) Mixing and mix proportioning of fibre reinforced concrete, PhD Thesis, University of PaisleyGoogle Scholar
  13. 13.
    Kameswara Rao CVS (1979) Effectiveness of random fibres in composites. Cem Concr Res 9:685–693Google Scholar
  14. 14.
    Kooiman AG (2000) Modelling steel fibre reinforced concrete for structural design, PhD Thesis, Delft University of TechnologyGoogle Scholar
  15. 15.
    Krenchel H (1975) Fibre spacing and specific fibre surface. In: Neville A (ed) Fibre reinforced cement and concrete. The Construction Press, UK, pp 69–79Google Scholar
  16. 16.
    Lambrechts A (2008) Performance classes for steel fibre reinforced concrete: be critical. In: BEFIB 2008: 7th RILEM international symposium on fibre reinforced concrete. RILEM Publications SARL, pp 1007–1020Google Scholar
  17. 17.
    Lappa L (2007) High strength fibre reinforced concrete: static and fatigue behavior in bending, PhD Thesis, Delft University of TechnologyGoogle Scholar
  18. 18.
    Laranjeira F (2010) Design-oriented constitutive model for steel fiber reinforced concrete, PhD Thesis, Universitat Politècnica de CatalunyaGoogle Scholar
  19. 19.
    Laranjeira F, Aguado A, Molins C (2010) Predicting the pullout response of inclined straight steel fibers. Mater Struct 43(6):875–895CrossRefGoogle Scholar
  20. 20.
    Laranjeira F, Molins C, Aguado A (2010) Predicting the pullout response of inclined hooked steel fibers. Cem Concr Res 40:1471–1487CrossRefGoogle Scholar
  21. 21.
    Laranjeira F, Grünewald S, Walraven J, Blom C, Molins C, Aguado A (2010c) Characterization of the orientation profile of steel fiber reinforced concrete. Mater StructGoogle Scholar
  22. 22.
    Lataste JF, Behloul M, Breysse D (2008) Characterisation of fibres distribution in a steel fibre reinforced concrete with electrical resistivity measurements. NDT&E Int 41:638–647CrossRefGoogle Scholar
  23. 23.
    Markovic I (2006) High-performance hybrid-fibre concrete: development and utilisation, PhD Thesis, Delft University of TechnologyGoogle Scholar
  24. 24.
    Martinie L, Rossi P, Roussel N (2010) Rheology of fiber reinforced cementitious materials: classification and prediction 40(2):226–234Google Scholar
  25. 25.
    Molins C, Martinez J, Arnáiz N (2008) Distribución de fibras de acero en probetas prismáticas de hormigón. In: CD-ROM from the 4th international structural concrete congress (ACHE), Valencia, SpainGoogle Scholar
  26. 26.
    Molins C, Aguado A, Saludes S (2009) Double punch test to control the tensile properties of FRC (Barcelona test). Rev. Mater Struct (RILEM) 42(4):415–425Google Scholar
  27. 27.
    NBN B 15-238 (1992) Essais des bétons renforcés de fibres-Essai de flexion sur éprouvettes prismatiquesGoogle Scholar
  28. 28.
    Nuclear Energy Agency, Committee on The Safety of Nuclear Installations (1998) Development priorities for Non-Destructive Examination of Concrete Structures in Nuclear Plant. Nea/Csni/R(98)6Google Scholar
  29. 29.
    Ozyurt N, Mason TO, Shah SP (2006) Non-destructive monitoring of fiber orientation using AC-IS: an industrial-scale application. Cem Concr Res 36:1653–1660CrossRefGoogle Scholar
  30. 30.
    Pujadas P (2008) Durabilidad del hormigón con fibras de polipropileno, Minor Thesis, Universitat Politècnica de CatalunyaGoogle Scholar
  31. 31.
    Pujadas P, Blanco A, de la Fuente A, Aguado A (2011) Cracking behaviour of FRC slabs with traditional reinforcement. Mater Struct. doi:10.1617/s11527-011-9791-0)
  32. 32.
    Robins PJ, Austin SA, Jones PA (2003) Spatial distribution of steel fibres in sprayed and cast concrete. Mag Concr Res 55(3):225–235CrossRefGoogle Scholar
  33. 33.
    Romualdi JP, Mandel JA (1964) Tensile strength of concrete affected by uniformly distributed and closely spaced short lengths of wire reinforcement. ACI J 61(6):27–37Google Scholar
  34. 34.
    Roqueta G, Romeu J, Jofre L (2009) Electromagnetic modeling and characterization of steel fiber reinforced concrete during the pouring process. In: Antennas and Propagation Society International Symposium, 2009. APSURSI ‘09. IEEE: 1–4Google Scholar
  35. 35.
    Serna P, Arango S, Ribeiro T, Núñez AM, Garcia-Taengua E (2009) Structural cast-in-place FRC: technology, control criteria and recent applications in Spain. Mater Struct 42(9):1233–1246CrossRefGoogle Scholar
  36. 36.
    Sihvola AH, Lindell IV (1992) Effective Permeability of Mixtures. Progress In Electromagnetics Research, PIER 06: 153–180. http://www.jpier.org/PIER/pier.php?volume=06. Accessed 5 Jan 2012
  37. 37.
    Soroushian P, Lee C (1990) Distribution and orientation of fibers in steel fiber reinforced concrete. ACI Mater J 87(5):433–439Google Scholar
  38. 38.
    Stälhi P (2008) Ultra-fluid, oriented hybrid-fibre-concrete, PhD Thesis, Institute for Building Materials ETH ZürichGoogle Scholar
  39. 39.
    Stälhi P, Custer R, van Mier JGM (2008) On flow properties, fibre distribution, fibre orientation and flexural behaviour of FRC. Mater Struct 41:189–196Google Scholar
  40. 40.
    Stroeven P (1999) Steel fibre reinforcement at boundaries in concrete elements. In: Proceedings of the 3rd international workshop on high performance fiber reinforced cement composites (HPFRCC3), Mainz, Germany, pp 413–421Google Scholar
  41. 41.
    Torrents JM, Juan-García P, Patau O, Aguado A (2009) Surveillance of steel fibre reinforced concrete slabs measured with an open-ended coaxial probe. In: Proceedings of the XIX IMEKO world congress: fundamental and applied metrology, Lisbon, Portugal, pp 2282–2284. http://www.imeko2009.it.pt/Papers/FP_633.pdf. Accessed 5 Jan 2012
  42. 42.
    Torrijos MC, Tobes JM, Barragán BE, Zerbino RL (2008) Orientation and distribution of steel fibres in self-compacting concrete. In: Proceedings of the 7th RILEM symposium on fibre reinforced concrete: design and applications (BEFIB 2008), Chennai, India, pp 729–738Google Scholar
  43. 43.
    Toujanji H, Bayasi Z (1998) Effects of manufacturing techniques on the flexural behavior of steel fiber-reinforced concrete. Cem Concr Res 28(1):115–124CrossRefGoogle Scholar
  44. 44.
    UNE 83512-1 (2005) Hormigones con fibras. Determinación del contenido de fibras de acero. AENOR, MadridGoogle Scholar
  45. 45.
    Van Damme S, Franchois A, De Zutter D, Taerwe L (2004) Nondestructive determination of the steel fiber content in concrete slabs UIT an open-ended coaxial probe. IEEE Trans Geosci Remote Sens 42(11):2511–2521CrossRefGoogle Scholar
  46. 46.
    Vandewalle L, Heirman G, van Rickstal F (2008) Fibre orientation in self-compacting fibre reinforced concrete. In: Proceedings of the 7th RILEM symposium on fibre reinforced concrete: design and applications (BEFIB 2008), Chennai, India, pp 719–728Google Scholar
  47. 47.
    Van Gysel A (2000) Studie van het uittrekgedrag van staalvezels ingebed in een cementgebonden matrix met toepassing op staalvezelbeton onderworpen aan buiging, PhD Thesis, Gent UniversityGoogle Scholar
  48. 48.
    UNE EN 14651 (2005) Test method for metallic fibrered concrete—measuring the flexural tensile strength (limit of proportionality (LOP), residual)Google Scholar

Copyright information

© RILEM 2012

Authors and Affiliations

  • Josep M. Torrents
    • 1
  • Ana Blanco
    • 1
  • Pablo Pujadas
    • 1
  • Antonio Aguado
    • 1
  • Pablo Juan-García
    • 1
  • Miguel Ángel Sánchez-Moragues
    • 1
  1. 1.Construction and Electronic Engineering DepartmentsTechnical University of CataloniaBarcelonaSpain

Personalised recommendations