Skip to main content
Log in

Durability assessment of alkali activated slag (AAS) concrete

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The environmental impact from the production of cement has prompted research into the development of concretes using 100% replacement materials activated by alkali solutions. This paper reports research into the durability of AAS concrete. The durability properties of AAS have been studied for a range of sodium oxide dosages and activator modulus. Properties investigated have included measurements of workability, compressive strength, water sorptivity, depth of carbonation and rapid chloride permeability. Microstructure studies have been conducted using scanning electron microscopy and energy dispersive X-ray spectroscopy. It was concluded that an activator modulus of between 1.0 and 1.25 was identified as providing the optimum performance for a sodium oxide dosage of 5% and that AAS concretes can exhibit comparable strength to concrete currently produced using Portland cement (PC) and blended cements. However, with regards to the durability properties such as water sorptivity, chloride and carbonation resistance; the AAS concretes exhibited lower durability properties than PC and blended concretes. This, in part, can be attributed to surface microcracking in the AAS concretes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lawrence CD (2003) The ‘ents. Lea’s chemistry of cement and concrete, 4th edn. Butterworth-Heinemann, Oxford, pp 421–470

  2. Roy DM, Idorn GM (1982) Hydration, structure, and properties of blast-furnace slag cements, mortars, and concrete. J Am Concr Inst 79(6):444–457

    Google Scholar 

  3. Neville AM (1996) Properties of concrete, 4th edn edn. Wiley, New York

    Google Scholar 

  4. Purdon AO (1940) The action of alkalis on blast-furnace slag. J Soc Chem Ind 59:191–202

    Article  Google Scholar 

  5. Talling B, Brandstetr J (1989) Present state and future of alkali activated slag concretes, fly ash, silica fume, slag, and natural pozzolans in concrete, vol 2. In: Proceedings of the third international conference, Trondheim, vol 114. American Concrete Institute SP, Norway, pp 1519–1546

  6. Deja J, Malolepsy J (1989) Resistance to chlorides. In: Proceedings of the third international conference, vol 2. American Concrete Institute SP, Trondheim, pp 1547–1564

  7. Bakharev T, Patnaikuni I (1997) Microstructure and durability of alkali activated cementitious pastes. In: Proceedings of the fifth international conference on structural failure, durability and retrofitting. Singapore Concrete Institute, Singapore

  8. Brough AR, Atkinson A (2002) Sodium silicate-based, alkali-activated slag mortars: part I. Strength, hydration and microstructure. Cem Concr Res 32(6):865–879

    Article  Google Scholar 

  9. Davidovits J (2002) Environmental drivers. In: Proceedings geopolymer. Melbourne, ISBN 0-9750242-0-5

  10. Habert G, d’Espinose de Lacaillerie JB, Roussel N (2011) An environmental evaluation of geopolymer based concrete production; reviewing current research trends. J Clean Prod 19:1229–1238

    Article  Google Scholar 

  11. McGuire E, Provis JL, Duxon P, Crarford R (2011) Geopolymer concrete is there an alternative and viable technology in the concrete sector which reduces carbon emissions? In: Proceedings concrete 11; building a sustainable future. Perth

  12. Adam AA, Molyneaux TCK, Patnaikuni I, Law DW (2007) Strength of mortar containing activated slag. The fourth international structural engineering and construction conference (ISEC-4). Innovations in structural engineering and construction. Taylor & Francis, Melbourne

  13. Gjorv OE (1989) Alkali activation of a Norwegian granulated blast furnace slag. Paper third international conference on fly ash, silica fume, slag, and natural pozzolans in concrete. Trondheim

  14. Wang SD, Scrivener KL (1995) Hydration products of alkali activated slag cement. Cem Concr Res 25(3):561–571

    Article  Google Scholar 

  15. Shi C, Li Y (1989) Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement. Cem Concr Res 19(4):527–533

    Article  MathSciNet  Google Scholar 

  16. Pan Z, Cheng L, Lu Y, Yang N (2002) Hydration products of alkali-activated slag-red mud cementitious material. Cem Concr Res 32(3):357–362

    Article  Google Scholar 

  17. McGannon H (1971) The making shaping and treating of steel [S.l.]. United States Steel, Pittsburgh

  18. Wang SD, Scrivener KL, Pratt PL (1994) Factors affecting the strength of alkali-activated slag. Cem Concr Res 24(6):1033–1043

    Article  Google Scholar 

  19. Li Y, Sun Y (2000) Preliminary study on combined-alkali-slag paste materials. Cem Concr Res 30(6):963–966

    Article  Google Scholar 

  20. Talling B, Brandstetr J (1989) Present state and future of alkali-activated slag concretes. In: Proceedings third international conference on fly ash, silica fume, slag, and natural pozzolans in concrete. Trondheim

  21. Chang JJ (2003) A study on the setting characteristics of sodium silicate-activated slag pastes. Cem Concr Res 33(7):1005–1011

    Article  Google Scholar 

  22. Collins F, Sanjayan JG (1998) Early age strength and workability of slag pastes activated by NaOH and Na2CO3. Cem Concr Res 28(5):655–664

    Article  Google Scholar 

  23. Song S, Sohn D, Jennings HM, Mason TO (2000) Hydration of alkali-activated ground granulated blast furnace slag. J Mater Sci 35:249–257

    Article  Google Scholar 

  24. Fernandez-Jimenez A, Palomo JG, Puertas F (1999) Alkali-activated slag mortars: mechanical strength behaviour. Cem Concr Res 29:1313–1321

    Article  Google Scholar 

  25. Teychenne DC, Franklin RE, Erntroy HC (1988) Design of normal concrete mixes. Department of the Environment, Watford

  26. Escalante-Garcia JI, Espinoza-Perez LJ, Gorokhovsky A, Gomez-Zamorano LY (2009) Coarse blast furnace slag as a cementitious material, comparative study as a partial replacement of portland cement and as an alkali activated cement. Constr Build Mater 23(7):2511–2517

    Article  Google Scholar 

  27. Collins FJ, Sanjayan JG (2001) Microcracking and strength development of alkali activated slag concrete. Cem Concr Compos 23:345–352

    Article  Google Scholar 

  28. Hakkinen T (1993) The influence of slag concrete on the microstructure, permeability and mechanical properties of concrete, part 1 microstructural studies and basic mechanical properties. Cem Concr Res 23(2):407–421

    Article  Google Scholar 

  29. Bakharev T, Sanjayan JG, Cheng YB (2001) Resistance of alkali-activated slag concrete to carbonation. Cem Concr Res 31:9:1277–1283

    Google Scholar 

  30. Hakkinen T (1993) The influence of slag concrete on the microstructure, permeability and mechanical properties of concrete: part 2 technical properties and theoretical examinations. Cem Concr Res 23(3):518–530

    Article  Google Scholar 

  31. Hall C (1989) Water sorptivity of mortars and concretes: a review. Mag Concr Res 41(147):51–61

    Article  Google Scholar 

  32. DeSouza SJ (1996) Test methods for the evaluation of the durability of covercrete. M.A.Sc. Thesis, University of Toronto, Toronto

  33. Collins F, Sanjayan JG (2000) Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cem Concr Res 30(9):1401–1406

    Article  Google Scholar 

  34. Jones MR, Dhir RK, Magee BJ (1997) Concrete containing ternary blended binders: resistance to chloride ingress and carbonation. Cem Concr Res 27(6):825–831

    Article  Google Scholar 

  35. Papadakis VG (2000) Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress. Cem Concr Res 30(2):291–299

    Article  Google Scholar 

  36. Al-Otaibi S (2008) Durability of concrete incorporating GGBS activated by water-glass. Constr Build Mater 22(10):2059–2067

    Article  Google Scholar 

  37. Bertolini L, Elsener B, Pedeferri P, Polder R (2004) Corrosion of steel in concrete. Wiley/Co. KGaA, Weinheim

    Google Scholar 

  38. Byfors K, Klingstedt G, Lehtonen V, Pyy H, Romben L (1989). Durability of concrete made with alkali activated slag. In: Proceedings third international conference on fly ash, silica fume, slag, and natural pozzolans in concrete. Trondheim

  39. Shi C, Stegemann JA, Caldwell RJ (1998) Effect of supplementary cementing materials on the specific conductivity of pore solution and its implications on the rapid chloride permeability test (AASHTO T277 and ASTM C1202) results. ACI Mater J 95(4):389–394

    Google Scholar 

  40. Provis JL, Van Deventer SJ (2007) Direct measurement of the kinetics of geopolymerisation by in situ energy dispersive X-ray diffractometry. Mater Sci 42:2974–2981

    Article  Google Scholar 

  41. Krizan D, Zivanovic B (2002) Effects of dosage and modulus of water glass on early hydration of alkali-slag cements. Cem Concr Res 32(8):1181–1188

    Article  Google Scholar 

  42. Collins F, Sanjayan JG (2000) Cracking tendency of alkali-activated slag concrete subjected to restrained shrinkage. Cem Concr Res 30(5):791–798

    Article  Google Scholar 

  43. Kutti T, Berntsson L, Chandra S (1992) Shrinkage of cements with high content blast furnace slag. Proceedings of Fly ash, silica fume, slag and natural pozzolans in concrete. Istanbul, pp 615–625 (supplementary papers)

  44. Malolepsszy J, Deja J (1988) The influence of curing conditions on the mechanical properties of alkali activated slag binders. Silicon Ind 11–12:179–186

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Law.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Law, D.W., Adam, A.A., Molyneaux, T.K. et al. Durability assessment of alkali activated slag (AAS) concrete. Mater Struct 45, 1425–1437 (2012). https://doi.org/10.1617/s11527-012-9842-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-012-9842-1

Keywords

Navigation