Skip to main content
Log in

Penetrability of hydraulic grouts

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Design of hydraulic grouts for strengthening of masonry historical buildings seems to follow rather empirical procedures, with all the related uncertainties, both in terms of economy and efficiency. This paper is part of a broader attempt to establish a rational methodology for the design of such grouts, based on their discrete injectability characteristics, i.e. (i) Penetrability, (ii) Fluidity and (iii) Stability. This paper deals with penetrability and constitutes the first part of this holistic methodology. The second part regarding the fluidity and the third regarding the stability are separately published. Grouting is intended to fill voids, fissures and open joints of the masonry as a system, producing a “dendrite” (a three-dimensional skeleton), directly contributing to the strength of the masonry as a whole. However, to do so, the grout should be able to pass through the “narrowest” possible width of such discontinuities, in order to reach the maximum possible internal volume of masonry and open joints, avoiding most of possible blockages. In the specific case of three-leaf masonries, the most decisive result of the grouting is expected to be the strengthening of the bond along the interfaces between the external layers and the infill; the rather small voids, as well as pre-existing fissures along these interfaces have to be penetrated. In this paper the penetrability of hydraulic grouts is discussed, and relationships between two characteristic diameters of the grains of the solid phase of the grout and the nominal minimum width of fissures and voids of the structure to be injected are proposed. Furthermore the beneficial role of replacing part of the cement or hydraulic lime with ultrafine materials in order to improve penetrability is presented, and related criteria are proposed.

Résumé

L’étude de la composition des coulis hydrauliques pour le renforcement des structures historiques en maçonnerie obéit souvent à des procédures plutôt empiriques accompagnées d’incertitudes tant en termes d’économie que d’efficacité. Cet article fait partie d’une tentative plus générale destinée à établir une méthodologie rationnelle permettant la formulation des coulis hydrauliques par l’intermédiaire d’une analyse de leurs propriétés d’injectabilité i.e. (i) Pénétrabilité, (ii) Fluidité et (iii) Stabilité. Cet article concerne la pénétrabilité et constitue la première partie de cette méthodologie. La seconde partie traitant la fluidité et la troisième concernant la stabilité, sont publiés séparément. L’injection des coulis a pour objectif de remplir les vides, fissures et joints ouverts de la maçonnerie considérée comme un système, produisant ainsi un “dendrite” (un squelette tridimensionnel), contribuant directement à la résistance de la maçonnerie dans son ensemble. Pour répondre à cet objectif, le coulis doit être capable de traverser les discontinuités les plus étroites possibles, afin d’atteindre le volume interne maximal de la maçonnerie et les joints ouverts, tout en évitant au mieux les éventuels blocages. Dans le cas spécifique de la maçonnerie a trois parois (une section composite comprenant deux parements extérieurs séparés par un remplissage), le résultat le plus significatif de l’injection du coulis est attendue d’être le renforcement de l’adhérence tout au long des interfaces entre les parois extérieurs et le remplissage; les vides plutôt petits ainsi que fissures préexistantes tout au long des ces interfaces doivent être pénétrés. La pénétrabilité du coulis est discutée dans cet article, et des relations entre deux diamètres caractéristiques des grains de la phase solide du coulis et l’épaisseur nominale minimale des vides et fissures de la structure à injecter sont proposées. Le rôle bénéfique du remplacement partiel du ciment ou de la chaux hydraulique par des éléments ultrafins afin d’améliorer la pénétrabilité est également examiné et des critères sont proposés.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. It is however noted that in some cases fv-values may be higher. That is why a final trial-mix is always necessary.

References

  1. Miltiadou AE (1990) Étude des coulis hydrauliques pour la réparation et le renforcement des structures et des monuments historiques en maçonnerie. Thèse de Doctorat de l’Ecole Nationale des Ponts et Chaussées. Pub by LCPC in Collection Etudes et recherches des Laboratoires des Ponts et Chaussées, série Ouvrages d’art, OA8, LCPC, Décembre 1991, Paris, France, p 278

  2. Miltiadou-Fezans A Tassios TP (2003) Penetrability of hydraulic grouts in structural strengthening. In Barsony PL (ed) Structural research, Anniversary volume honouring Peter Lenkei. University of Pecs, Hungary

  3. Miltiadou-Fezans A, Tassios TP (2012) Fluidity of hydraulic grouts for masonry-strengthening. Mater Struct 45:1817–1828. doi:10.1617/s11527-012-9872-8

    Google Scholar 

  4. Miltiadou-Fezans A, Tassios TP (2012b) Stability of hydraulic grouts for masonry strengthening. Mater Struct. doi:10.1617/s11527-012-0003-3

  5. Miltiadou-Fezans A, Papakonstantinou E, Zambas K, Panou A, Frantzikinaki K (2005) Design and application of hydraulic grouts of high injectability for structural restoration of the column drums of the Parthenon Opisthodomos. In: Brebbia CA, Torpiano A (eds) Structural studies, repairs and maintenance of architectural heritage IX. WIT Transactions on the Built Environment, vol 83. WIT press, Southampton, pp 461–471

  6. Binda L, Fontana A, Mirabella Roberti G (1993) Modelling the mechanical behaviour of multiple-leaf stone walls. In: International symposium on “Computer methods in structural masonry”, Swansea

  7. Binda L, Fontana A, Mirabella Roberti G (1994) Mechanical behaviour and stress distribution in multiple-leaf stone walls. In: Proceedings of 10th international brick/block/masonry conference, Calgary, pp 1–9

  8. Egerman R, Frick B, Neuwald Cm (1993) Analytical and experimental approach to the load bearing of multiple leaf masonry. In: Brebbia CA, Frewer RJB (eds) Structural repair and maintenance of historical buildings III. Computational Mechanics Publications, Southampton

  9. Toumbakari EE (2002) Lime-pozzolan-cement grouts and their structural effects on composite masonry walls. PhD Thesis, Department of Civil Engineering, KULeuven

  10. Binda L, Pina-Henriques J, Anzani A, Fontana A, Lourenco PB (2006) A contribution for the understanding of load-transfer mechanisms in multi-leaf masonry walls: testing and modelling. Eng Struct 28(8):1132–1148

    Article  Google Scholar 

  11. Miltiadou A, Durville J-L, Martineau F, Massieu E, Serrano J-J (1993) Etude mécanique de mélanges cailloux-mortier-influence de l’injection de coulis. Bulletin de liaison, Laboratoire des Ponts et Chaussées-183- janv.- févr. 1993, Réf. 3677, pp 75–84

  12. Egermann R (1993) Investigation on the load bearing behavior of multiple leaf masonry. In: “Structural preservation of the architectural heritage”, proceedings of the IABSE symposium, Rome, Italy, pp 305–312

  13. Egermann R (1993) Stone masonry buildings: research and applications at the University of Karlsruhe. In: “Murature Sicurezza Recupero”, proceedings of the conference of ITEA, Trento, Italy, pp 70–95

  14. Vintzileou E, Tassios TP (1995) Three leaf stone masonry strengthened by injecting cement grouts. J Struct Eng ASCE 121(5):848–856

    Article  Google Scholar 

  15. Valluzzi M-R (2000) Comportamento meccanico di murature storiche consolidate con materiali e tecniche a base di calce. PhD Thesis, University of Trieste, p 276

  16. Vintzileou E, Miltiadou-Fezans A (2008) Mechanical properties of three-leaf stone masonry grouted with ternary or hydraulic lime based grouts. Eng Struct 30(8):2265–2276

    Article  Google Scholar 

  17. Adami CE, Vintzileou E (2008) Interventions to historic masonries: investigation of the bond mechanism between stones or bricks and grouts. RILEM Mater Struct 41(2):255–267

    Google Scholar 

  18. Gustafson G, Stille H (1996) Prediction of groutability from grout properties and hydrogeological data. Tunn Undergr Space Technol 11(3):325–332

    Article  Google Scholar 

  19. Eriksson M (2002) Prediction of grout spread and sealing effect. A probabilistic approach. Doctoral Thesis, Royal Institute of Technology, Stockholm, Sweden

  20. Gustafson M, Axelsson G (2010) The penetracone, a new robust field measurement device for determining the penetrability of cementitious grouts. Tunn Undergr Space Technol 25:1–8

    Article  Google Scholar 

  21. Axelsson M, Gustafson G, Fransson A (2009) Stop mechanism for cementitious grouts at different water-to-cement ratios. Tunn Undergr Space Technol 24:390–397

    Article  Google Scholar 

  22. Eriksson M, Friedrich M, Vorschulze Ch (2004) Variations in the rheology and penetrability of cement-based grouts—an experimental study. Cem Concr Res 34:1111–1119

    Article  Google Scholar 

  23. Binda L, Modena C, Baronio G (1993) Strengthening of masonries by injection technique. In: Proceedings of 6th NaMC, vol I, Philadelphia, pp 1–14

  24. Binda L, Modena C, Baronio G, Gelmi A (1994) Experimental qualification of injection admixtures used for repair and strengthening of stone masonry walls. In: 10th international brick/block masonry conference, vol 2, Calgary, pp 539–548

  25. Laefer D, Baronio G, Anzani A, Binda L (1998) Measurement of grout injection efficacy for stone masonry walls. In: Conv. 7NAMC, vol 1, Notre Dame, pp 484–496

  26. Valluzzi M-R, Da Porto F, Modena C (2003) Grout requirements for the injection of stone masonry walls. In: A new era of building, proceedings of the conference of ICPCM, Cairo, Egypt, February 18–20

  27. Binda L, Baronio G, Tiraboschi C, Tedeschi C (2003) Experimental research for the choice of adequate materials for the reconstruction of the Cathedral of Noto. Constr Build Mater 17:629–639

    Article  Google Scholar 

  28. Valluzzi MR (2004) Consolidamento di murature in pietra. Inezioni di calce idraulica natural. Collana Scientifica “Recifere”. Gruppo Editoriale Faenza Editrice S.p.A., Faenza, p 128

  29. Kalagri A, Miltiadou-Fezans A, Vintzileou E (2010) Design and evaluation of hydraulic lime grouts for the strengthening of stone masonry historic structures. Mater Struct 43:1135–1146

    Article  Google Scholar 

  30. Mutman U, Kavak A (2011) Improvement of granular soils by low pressure grouting. Int J Phys Sci 6(17):4311–4322

    Google Scholar 

  31. Bras A, Henriques FMA (2012) Natural hydraulic lime based grouts—the selection of grout injection parameters for masonry consolidation. Constr Build Mater 26(2012):135–144

    Google Scholar 

  32. Paillère A-M, Rizoulières Y (1978) Réparation des structures en béton par injection de polymères. Bulletin de Liaison des Laboratoires des Ponts et Chaussées 96:17–23

    Google Scholar 

  33. Ferragni D, Malliet J, Di Martino S, Forti M (1981) Essais de laboratoire sur des coulis à base de ciment. In: Proceedings of symposium on international Mortiers, ciments et coulis utilisés dans la conservation des bâtiments historiques. ICCROM, Rome, pp 185–203

  34. Ferragni D, Forti M, Malliet J, Mora P, Teutonico JM, Torraca G (1984) Injection grouting of mural paintings and mosaics. In: Proceeding of symposium international of adhesives and consolidants, Paris, 2–8 September, pp 110–116

  35. Van Rickstal F (2000) Grout injection of masonry, scientific approach and modeling. PhD Thesis, Department of Civil Engineering, Katholieke Universiteit Leuven

  36. Littlejohn GS (1983) Chemical grouting. South African Institution of Civil Engineers, University of Wetwatersrand Johannesburg, 4–6 July 1983

  37. Mitchell KJ (1970) In-plane treatement of foundation soils. Journal of the Soil Mechanics and Foundations Division, Proc. ASCE, SM1, pp. 73–110

  38. Léonard ZF (1961) Grouting: clay based and chemical. The Engineer 26:864–866

    Google Scholar 

  39. Johnson SJ (1958) Cement and clay grouting of foundations: grouting with clay–cement grouts. J Soil Mech Found Eng Div ASCE 84(1):1–12

    Google Scholar 

  40. Hutchinson MT (1981) Principles of grouting II. Summary of a lecture given the 16-9-1981 in the Cement and Concrete Association Conference and Training Centre, UK, TDH 4710, p 6

  41. Cambefort H (1977) Principes et applications de l’ injection. Annales de l’ITBTP, Paris, Supp. no. 353, Série: Sols et fondations, no. 144, 23 pp

  42. Papadakis M (1959) L’ injectabilité des coulis et mortiers de ciments. Revue des matériaux de construction. 531, publication technique no. 11 CERILH, 48 pp

  43. Dantu P (1961) Etude mécanique d’un milieu pulvérulent formé de sphères égales de compacité maxima. 5ème Congrès International de Mécanique des sols et des Travaux de Fondations, Paris, Dunod, Publication 61-3, 10 pp

  44. Paillère A-M, Guinez R (1984) Recherche d’une formulation de coulis à base de liants hydrauliques pour l’injection dans les fines fissures et les cavités. Bulletin de liaison des Laboratoires des Ponts et Chaussées, Paris, no 130, pp 51–57

  45. Paillère A-M, Buil M, Miltiadou A, Guinez R, Serrano JJ (1989) Use of silica fume and superplasticizers in cement grouts for injection of fine cracks. In: Proceedings of the third international conference “Use of fly ash, silica fume, slag and natural pozzolans in concrete”, Trondheim, Norway, SP-ACI, vol 2, pp 1131–1157

  46. Miltiadou A, Paillère A-M, Serrano JJ, Denis A, Musicas N (1990) Formulation de coulis hydrauliques pour l’injection des fissures et cavités des structures en maçonnerie dégradées. In: Proceedings of international conference on structural conservation of stone masonry, 31/10-3/11/1989, Athènes, Grèce, Pub. ICCROM, pp 299–312

  47. Paillère A-M, Serrano JJ, Buil M (1986) Possibilités offertes par l’emploi d’ultrafines siliceuses dans les coulis d’injection à base de liants hydrauliques. Bulletin de liaison des Laboratoires des Ponts et Chaussées, Paris, no 141, pp 23–25

  48. Ranisch E-H, Rostasy FS; Herschelman F (1989) Properties of cement grouts with silica fume addition for the injecton of post-tensioning ducts. In: Proceedings of the third international conference on the “Use of fly ash, silica fume, slag and natural Pozzolans in concrete”, vol 2, June 18–23, 1989, Trondheim, Norway, SP 114-56, pp 1159–1171

  49. Buil M, Paillère A-M, Hamon JP (1987) Application d’un modèle de viscosité de suspensions concentrées polydispersées à la formulation de coulis d’injection à base de liants hydrauliques. In: Proceedings of first international RILEM conference “From materials science to construction materials engineering”, vol 1. Chapman and Hall, Paris, pp 349–356

  50. Domone PL, Tank SB (1986) Use of condensed silica fume in Portland cement grouts. In: Proceedings of the second international conference on fly ash, silica fume, slag and natural pozzolans in concrete, vol 2, Madrid, Spain, pp 1231–1260

  51. Aïtcin PC, Ballivy G, Parizeau R (1984) The use of condensed silica fume in grouts. Innovative cement grouting. ACI Special Publication SP-83, pp 1–18

  52. Hobbs DW (1980) The effect of pulverized-fuel ash upon the workability of cement paste and concrete. Mag Concr Res 32(113):219–226

    Article  Google Scholar 

  53. Bras A, Henriques FMA (2009) The influence of the mixing procedures on the optimization of fresh grout properties. Mater Struct 42:1423–1432

    Article  Google Scholar 

  54. Fernandez-Altable V, Ignasi Casanova (2006) Influence of mixing sequence and superplasticizer dosage on the rheological response of cement pastes at different temperatures. Cem Concr Res 36(9):1222–1230

    Article  Google Scholar 

  55. Toumbakari E–E, Van Gemert D, Tassios TP, Tenoutasse N (1999) Effect of mixing procedure on injectability of cementitious grouts. Cem Concr Res 29(1999):867–872

    Article  Google Scholar 

  56. Hu C (1995) Rhéologie des betons fluids. Etudes et Recherches des Laboratoires des Ponts et Chaussées. Série ouvrages d’art OA16, LCPC, pp 1–202

  57. Tattersall GH, Baker PH (1988) The effect of vibration on the rheological properties of fresh concrete. Mag Concr Res 40(143):79–89

    Article  Google Scholar 

  58. Legrand C (1982) La structure des suspensions de ciments. Le béton hydraulique. Presses de l’ École Nationale des Ponts et Chaussées, Paris, pp 99–113

  59. Roy DM, Asaga K (1979) Rheological properties of cement mixes: III. The effects of mixing procedures on viscometric properties of mixes containing superplasticizers. Cem Concr Res 9(6):731–739

    Article  Google Scholar 

  60. Bombled JP (1974) Rhéologie des mortiers et des bétons frais, étude de la pâte interstitielle de ciment. Revue des matériaux de construction, no. 688, Mai-Juin, pp 137–155

  61. Papadakis M (1957) Recherches sur le malaxage « a haute turbulence » des suspensions de ciment. Publication Technique No. 82-83, Extrait de la Revue des Matériaux de Construction, CERILH, pp 1–25

  62. Miltiadou-Fezans A, Kalagri A, Delinikolas N (2007) Design of hydraulic grout and application methodology for stone masonry structures bearing mosaics and mural paintings: the case of the Katholikon of Dafni Monastery. In: Arun G (ed) Proceedings of international symposium on studies on historical heritage, Antalya, Turkey, 16–21 September, Yildiz Technical University, pp 649–656

  63. Miltiadou-Fezans A, Kalagri A, Kakkinou S, Ziagou A, Delinikolas N, Zarogianni E, Chorafa E. (2008). Methodology for in situ application of hydraulic grouts on historic masonry structures. The case of the Katholikon of Dafni Monastery. In: D’Ayala DF, Fodde E (eds) Proceedings of the 6th international conference on structural analysis of historic construction, 2–4 July, Bath, UK, vol II. CRC Press/Balkema, Taylor and Francis Group, pp 1025–1033

Download references

Acknowledgments

Thanks are due to Sophie Anagnostopoulou, MSc. Chemical Engineer and to Anna Kalagri, MSc. Chemical Engineer and Conservator of Art, for their help with the experiments and the graphics of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Miltiadou-Fezans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miltiadou-Fezans, A., Tassios, T.P. Penetrability of hydraulic grouts. Mater Struct 46, 1653–1671 (2013). https://doi.org/10.1617/s11527-012-0005-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-012-0005-1

Keywords

Navigation