Skip to main content
Log in

Stability of hydraulic grouts for masonry strengthening

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Besides its sufficient penetrability and fluidity, a hydraulic grout in order to be injectable should also exhibit an appropriate stability, i.e. to be able to keep its homogeneity during the injection process, up to its setting. The paper is part of a broader attempt to establish a rational methodology for the design of hydraulic grouts for strengthening of masonry historical buildings, based on their discrete injectability characteristics. The first and second part of this holistic methodology regarding the penetrability and fluidity were published elsewhere. This paper deals with stability, the third basic injectability characteristic. The most prevailing parameters shaping stability characteristics, are water content and percentage of ultrafine materials. After a brief literature survey, an oversimplified predictive model of bleeding is firstly proposed and then its validity is confirmed using the results of an experimental study. The role of superplasticizers is also discussed. In both cases, with and without superplasticizer, semi-empirical formulae are proposed, that may be useful for the design of a grout composition. Finally, the paper presents experimental results demonstrating the role of water and superplasticizer content in the appearance of segregation; some empirical formulae are also proposed for the estimation of the critical water content initiating segregation.

Résumé

En sus des exigences de pénétrabilité et de fluidité, un coulis hydraulique doit également avoir une stabilité satisfaisante pour pouvoir être injectable. Il doit ainsi pouvoir conserver son homogénéité durant tout le processus d’injection. Cet article fait partie d’une tentative plus générale destinée à établir une méthodologie rationnelle permettant la formulation des coulis hydrauliques par l’intermédiaire d’une analyse de leurs propriétés d’injectabilité. Les deux premières parties de cette méthode portant respectivement sur les caractéristiques de pénétrabilité et de fluidité ont été publiées par ailleurs. Le présent article est consacré à la stabilité, troisième propriété essentielle caractérisant l’injectabilité. Les paramètres essentiels influençant les caractéristiques de stabilité sont la teneur en eau et le pourcentage en éléments ultra fins. Après une brève analyse bibliographique, un modèle simplifié de prédiction de l’exsudation est proposé puis validé à l’aide des résultats d’une analyse expérimentale. Le rôle des superplastifiants est également discuté. Des formules semi empiriques considérant l’éventuelle présence de superplastifiant et constituant une aide dans la formulation des coulis hydrauliques sont ensuite proposées. Cet article présente enfin des résultats expérimentaux montrant le rôle de l’eau et de la teneur en superplastifiant dans l’apparition de ségrégation. Quelques formules empiriques fournissant une estimation de la teneur en eau critique provoquant une initialisation du phénomène de ségrégation sont également proposées.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Miltiadou-Fezans A, Tassios TP (2012) Penetrability of hydraulic grouts. Mater Struct. doi:10.1617/s11527-012-0005-1

  2. Miltiadou-Fezans A, Tassios TP (2012) Fluidity of hydraulic grouts for masonry-strengthening. Mater Struct. doi:10.1617/s11527-012-9872-8

  3. Miltiadou-Fezans A, Kalagri A, Kakkinou S, Ziagou A, Delinikolas N, Zarogianni E, Chorafa E (2008) Methodology for in situ application of hydraulic grouts on historic masonry structures. The case of the Katholikon of Dafni Monastery. In: D’Ayala D and Fodde E (eds) Proceedings of the 6th international conference on structural analysis of historic construction, vol II. CRC Press/Balkema, Taylor and Francis Group, Bath, pp 1025–1033, 2–4 July 2008

  4. Miltiadou-Fezans A, Tassios TP (2009) Modern practical guidelines for the application of hydraulic grouts in historic constructions. In: Trakassopoulou K, Doussi M, Chatzitryphon N (eds) Proceedings of 2nd national conference “Appropriate interventions for the safeguarding of monuments and historical buildings. New design tendencies”. Thessaloniki, pp 485–494, 14–16 October 2009

  5. Bombled JP (1974) Rhéologie des mortiers et des bétons frais, étude de la pâte interstitielle de ciment, vol 688. Revue des matériaux de construction, Mai-Juin, pp 137–155

  6. Ish-Shalom M, Greenberg SA (1962) The rheology of fresh Portland cement paste. In: Proceedings of IV International Symposium on the chemistry of cement, Washington 1960, monograph 43, vol II. National Bureau of Standards, Washington DC, pp 731–748

  7. Legrand C (1972) Contribution a l’ étude de la rheologie du beton frais. Materiaux et Constructions, vol 5, nο. 29, pp 275–295, and nο 30, pp 379–393

  8. Legrand C (1982) La structure des suspensions de ciments. Le béton hydraulique. Presses de l’ École Nationale des Ponts et Chaussées, Paris, pp 99–113

  9. Littlejohn GS (1982) Design of cement based grouts. In: Proceedings of the conference on grouting in geotechnical engineering. ASCE, New Orleans, 10–12 Feb 1982, pp 1–7

  10. Papadakis M (1959) L’injectabilité des coulis et mortiers de ciments. Revue des matériaux de construction, 531, publication technique no. 11. CERILH, pages, p 48

  11. Powers T-C (1968) The properties of fresh concrete. Wiley, New York, pp 533–599

    Google Scholar 

  12. Vom Berg W (1979) Influence of specific surface and concentration of solids upon the flow behaviour of cement pastes, vol 31. Mag Concr Res 109:211–216

    Article  Google Scholar 

  13. Aïtcin PC, Ballivy G, Parizeau R (1984) The use of condensed silica fume in grouts. Innovative cement grouting ACI special publication SP-83. American Concrete Institute, Detroit, pp 1–18

  14. Domone PL, Tank SB (1986) Use of condensed silica fume in Portland cement grouts. In: Proceedings of the second international conference on fly ash, silica fume, slag and natural pozzolans in concrete, vol 2. ACI, Madrid, pp 1231–1260

  15. Miltiadou AE (1990) Étude des coulis hydrauliques pour la réparation et le renforcement des structures et des monuments historiques en maçonnerie. Thèse de Doctorat de l’Ecole Nationale des Ponts et Chaussées. Pub by LCPC in Collection Etudes et Recherches des Laboratoires des Ponts et Chaussées, Paris, Dec 1991, p 278

  16. Shannag MJ (2002) High-performance cementitious grouts for structural repair. Cem Concr Res 32(2002):803–808

    Article  Google Scholar 

  17. Shimoda M, Ohmori H (1982) Ultra fine grouting material. In: Proceedings of conference on grouting in geotechnical engineering. ASCE, New Orleans, pp 77–91, 10–12 Feb 1982

  18. Zebovitz S, Krizek RJ, Atmatzidis K (1989) Injection of fine sands with very fine cement grout. J Geotech Eng 115(12):1717–1733

    Google Scholar 

  19. Benhamou O (1994) Comportement rhéologique des coulis de liants hydrauliques ultrafins destinés a l injection. Ph.D. thesis, ENS des Mines de Paris, Paris, pp 1–318

  20. Viseur V, Barrioulet M (1998) Critères d’injectabilité de coulis de ciments ultrafins. In: Materials and structures/matériaux et constructions, vol 31. Springer, New York, pp 393–399

  21. Yahia A, Khayat KH (2003) Applicability of rheological models to high-performance grouts containing supplementary cementitious materials and viscosity enhancing admixture. In: Materials and structures/matériaux et constructions, vol 36. Springer, New York, pp 402–412

  22. Saric-Coric M, Khayat KH, Tagnit-Hamou A (2003) Performance characteristics of cement grouts made with various combinations of high-range water reducer and cellulose-based viscosity modifier. Cem Concr Res 33:1999–2008

    Article  Google Scholar 

  23. Valluzzi MR, da Porto F, Modena C (2003) Grout requirements for the injection of stone masonry walls. In: International conference on performance of construction materials: a new era of building. ICPCM, Cairo, 18–20 Feb 2003

  24. Papadakis M (1957) Recherches sur le malaxage “a haute turbulence” des suspensions de ciment. Publication technique no. 82–83. Extrait de la Revue des Matériaux de Construction, CERILH, Neuss, pp 1–25

  25. Markestad SA (1976) The Gukild-Carlsen method for making stabilized pastes of cement. Mater Struct 9(50):115–117

    Google Scholar 

  26. Lombardi G (1985) The role of cohesion in cement grouting of rock. In: 15th Congress on large dams. Com. Int. des Grands Barragges, Lausanne, Switzerland, Q.58 R.13, pp 235–261

  27. Lombardi G (1990) La perméabilité et injectabilité des massifs rocheux fissures. Rev. Français Géotechnique 51:5–29

    Google Scholar 

  28. Mirza J, Mirza MS, Roy V, Saleh K (2002) Basic rheological and mechanical properties of high-volume fly ash grouts. Constr Build Mater 16:353–363

    Article  Google Scholar 

  29. Ozcan T, Zaimoglou AS, Hinislioglou S, Altun S (2005) Taguchi approach for optimization of the bleeding on cement-based grouts. Tunnel Underground Space Technol 20(2005):167–173

    Google Scholar 

  30. Bras A, Henriques FMA (2012) Natural hydraulic lime based grouts: the selection of grout injection parameters for masonry consolidation. Constr Build Mater 26(2012):135–144

    Google Scholar 

  31. Van Rickstal F (2000) Grout injection of masonry, scientific approach and modeling. Katholieke Universiteit Leuven, Leuven

  32. Bras A, Henriques FMA (2009) The influence of the mixing procedures on the optimization of fresh grout properties. Mater Struct 42:1423–1432

    Article  Google Scholar 

  33. Toumbakari E-E (2002) Lime-pozzolan-cement grouts and their structural effects on composite masonry walls. Katholieke Universiteit Leuven, Leuven

    Google Scholar 

  34. Rosquoët F, Alexis A, Khelidj A, Phelipot A (2003) Experimental study of cement grout: rheological behavior and sedimentation. Cem Concr Res 33(2003):713–722

    Article  Google Scholar 

  35. Miltiadou-Fezans A, Kalagri A, Triantafyllou M (2006) Research report for the design of hydraulic grouts of the consolidation and restoration of the Katholikon of Dafni Monastery. Comparative study of hydraulic lime based grouts. Research report. Directorate of Technical Research on Restoration, Hellenic Ministry of Culture, Athens, p 68

Download references

Acknowledgments

Thanks are due to Sophie Anagnostopoulou, MSc. Chemical Engineer, Anna Kalagri, MSc. Chemical Engineer and Conservator of Art and Martha Savvidou Dr Chemical Engineer, for their help with the experiments and the graphics of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Miltiadou-Fezans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miltiadou-Fezans, A., Tassios, T.P. Stability of hydraulic grouts for masonry strengthening. Mater Struct 46, 1631–1652 (2013). https://doi.org/10.1617/s11527-012-0003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-012-0003-3

Keywords

Navigation