Skip to main content
Log in

Influence of experimental setups on the apparent uniaxial tensile load-bearing capacity of Textile Reinforced Concrete specimens

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

An important parameter for dimensioning of Textile Reinforced Concrete (TRC) structures and structural elements is the tensile load-bearing capacity of the composite. Respective values are usually derived from uniaxial tensile tests with overcritically reinforced TRC specimens. In this paper, influences from specimen geometry, e.g. plane and waisted specimens, and load application design, e.g. stiff glued steel plates or soft clamping constructions are investigated. Therefore, experimental results regarding the load-bearing capacity of the composite are statistically evaluated. The experimental observations are supported by results of numerical simulations with a one-dimensional model based on the Finite Element Method. These simulations provide stress distributions in concrete and reinforcing fibres as well as the tensile load-bearing capacity. Based on these results existing test setups for the derivation of the load-bearing capacity of the composite for dimensioning are assessed. As a result, plane plate specimens with a load application by means of friction is recommended for experimental determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdkader A (2004) Charakterisierung und Modellierung der Eigenschaften von AR-Glasfilamentgarnen für die Betonbewehrung. Dissertation, TU Dresden

  2. Bösche A, Jesse F, Ortlepp R, Weiland S, Curbach M (2008) Textile Reinforced Concrete for flexural strengthening of RC-structures—Part 1: Structural behavior and design model. In: Aldea CM (ed) ACI SP-251 Design & applications of textile-reinforced concrete. ACI, Farmington Hills, pp 19–40

    Google Scholar 

  3. Brockmann T, Raupach M (2002) Durability investigations on Textile Reinforced Concrete. In: Proceedings of the 9th international conference on durability of building materials and components (CSIRO2002), Brisbane, Australia, paper no. 111

  4. Bruckermann O (2007) Zur Modellierung des Zugtragverhaltens von textilbewehrtem Beton. Dissertation, RWTH Aachen

  5. Brückner A, Ortlepp R, Curbach M (2006) Textile Reinforced Concrete for strengthening in bending and shear. Mater Struct 39(8):741–748. doi:10.1617/s11527-005-9027-2

    Article  Google Scholar 

  6. Brückner A, Ortlepp R, Curbach M (2008) Anchoring of shear strengthening for T-beams made of Textile Reinforced Concrete (TRC). Mater Struct 41(2):407–418. doi:10.1617/s11527-007-9254-9

    Article  Google Scholar 

  7. Chudoba R, Vořechovský M, Konrad M (2006) Stochastic modeling of multi-filament yarns. I. Random properties within the cross-section and size effect. Int J Solids Struct 43(3–4):413–434. doi:10.1016/j.ijsolstr.2005.06.063

    Article  MATH  Google Scholar 

  8. Curbach M, Schicktanz K, Jesse F, Hartig J (2006) Stochastische Eigenschaften der Zugfestigkeit freier und zementös eingebetteter Filamentbündel aus AR-Glas. In: Ruge P, Graf W (eds) 10. Dresdner Baustatik-Seminar, Neue Bauweisen—Trends in Statik und Dynamik. TU Dresden, Dresden, pp 91–100

    Google Scholar 

  9. Curbach M, Weiland S, Michler H (2008) Textile Reinforced Concrete—the bridge between the textile industry and the construction sector. Text J 125(4):58–69

    Google Scholar 

  10. Daniels HE (1945) The statistical theory of the strength of bundles of threads. I. Proc R Soc Lond A183:405–435

    MathSciNet  Google Scholar 

  11. Dugas M, Weise S, Curbach M, Hempel R, Offermann P, Franzke G (1998) Force-deformation behaviour of tensile-loaded specimens made of Textile Reinforced Concrete. In: Techtextil symposium 1998, Lyon, pp 143–152

  12. Gao SL, Mäder E, Plonka R (2004) Coatings for glass fibers in a cementitious matrix. Acta Mater 52(16):4745–4755. doi:10.1016/j.actamat.2004.06.028

    Article  Google Scholar 

  13. Gao SL, Mäder E, Plonka R (2007) Nanostructured coatings of glass fibers: improvement of alkali resistance and mechanical properties. Acta Mater 55(3):1043–1052. doi:10.1016/j.actamat.2006.09.020

    Article  Google Scholar 

  14. Hartig J, Häußler-Combe U, Schicktanz K (2008) Influence of bond properties on the tensile behaviour of Textile Reinforced Concrete. Cem Concr Compos 30(10):898–906. doi:10.1016/j.cemconcomp.2008.08.004

    Article  Google Scholar 

  15. Hartig J, Jesse F, Häußler-Combe U (2010) Evaluation of experimental setups for determining the tensile strength of Textile Reinforced Concrete. In: Brameshuber W (ed) 2nd ICTRC—Textile Reinforced Concrete: proceedings of the international RILEM conference on material science (MatSci), vol 1. RILEM Publications S.A.R.L., Bagneux, pp 117–127

    Google Scholar 

  16. Hausding J, Lorenz E, Ortlepp R, Lundahl A, Cherif C (2011) Application of stitch-bonded multi-plies made by using the extended warp knitting process: reinforcements with symmetrical layer arrangement for concrete. J Text Inst. doi:10.1080/00405000.2010.515729

  17. Hegger J, Will N, Bruckermann O, Voss S (2006) Load-bearing behaviour and simulation of Textile Reinforced Concrete. Mater Struct 39:765–776. doi:10.1617/s11527-005-9039-y

    Article  Google Scholar 

  18. Jesse F (2004) Load bearing behaviour of filament yarns in a cementitious matrix. Dissertation, TU Dresden (in German)

  19. Köckritz U (2007) In-situ Polymerbeschichtung zur Strukturstabilisierung offener nähgewirkter Gelege. Dissertation, TU Dresden

  20. Konrad M, Chudoba R (2009) Tensile behavior of cementitious composite reinforced with epoxy impregnated multifilament yarns. Int J Multiscale Comput Eng 7(2):115–133. doi:10.1615/IntJMultCompEng.v7.i2.40

    Article  Google Scholar 

  21. Lorenz E, Ortlepp R, Hausding J, Cherif C (2011) Effizienzsteigerung von Textilbeton durch Einsatz textiler Bewehrungen nach dem erweiterten Nähwirkverfahren. Beton Stahlbetonbau 106(1):21–30. doi:10.1002/best.201000072

    Article  Google Scholar 

  22. Molter M (2005) Zum Tragverhalten von textilbewehrtem Beton. Dissertation, RWTH Aachen

  23. Orlowsky J, Raupach M (2006) Modelling the loss in strength of AR-glass fibres in textile-reinforced concrete. Mater Struct 39:635–643

    Article  Google Scholar 

  24. Brameshuber W et al (2010) Uniaxial tensile test—test method to determine the load bearing behavior of tensile specimens made of textile reinforced concrete (Proposal for a recommendation by RILEM TC 232-TDT to be published in Materials and Structures)

  25. Vořechovský M (2010) Incorporation of statistical length scale into Weibull strength theory for composites. Compos Struct 92(9):2027–2034. doi:10.1016/j.compstruct.2009.11.025

    Article  Google Scholar 

  26. Vořechovský M, Chudoba R (2006) Stochastic modeling of multi-filament yarns. II. Random properties over the length and size effect. Int J Solids Struct 43(3–4):435–458. doi:10.1016/j.ijsolstr.2005.06.062

    Article  MATH  Google Scholar 

  27. Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297

    MATH  Google Scholar 

  28. Weiland S, Ortlepp R, Hauptenbuchner B, Curbach M (2008) Textile Reinforced Concrete for flexural strengthening of RC-structures—Part 2: Application on a concrete shell. In: Aldea CM (eds) ACI SP-251 Design & applications of textile-reinforced concrete. ACI, Farmington Hills, pp 41–58

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of this research from Deutsche Forschungsgemeinschaft DFG (German Research Foundation) within the Sonderforschungsbereich 528 (Collaborative Research Center) “Textile Reinforcement for Structural Strengthening and Retrofitting” at Technische Universität Dresden, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hartig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartig, J., Jesse, F., Schicktanz, K. et al. Influence of experimental setups on the apparent uniaxial tensile load-bearing capacity of Textile Reinforced Concrete specimens. Mater Struct 45, 433–446 (2012). https://doi.org/10.1617/s11527-011-9775-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-011-9775-0

Keywords

Navigation