Skip to main content
Log in

Influence of aggregate skeleton on shrinkage properties: validation of the model developed by Le Roy for the case of self-compacting concrete

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Shrinkage behavior of self-compacting concrete (SCC) can be different from that of traditional vibrated concrete, because of different paste and aggregate volumes. For traditional concrete, shrinkage can be estimated based on shrinkage results obtained on paste level. Based on homogenization techniques, Le Roy developed a model relating the shrinkage of concrete to the shrinkage of the representative cement paste, considering a granular coefficient taking into account the elastic properties and the concentration of the aggregates. By means of an extended experimental program, the applicability of this model to the case of SCC has been verified. Furthermore, some known results on the influence of water/cement ratio and filler/cement ratio have been confirmed and can be explained by porosity results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. De Schutter G, Bartos P, Domone P, Gibbs J (2008) Self-compacting concrete. Whittles Publishing, Caithness, 296p

  2. Leemann A, Hoffmann C (2005) Properties of self-compacting concrete and conventional concrete, differences and similarities. Mag Concrete Res 57(6):315–319

    Article  Google Scholar 

  3. Loser R, Leemann A (2009) Shrinkage and restrained shrinkage cracking of selfcompacting concrete compared to conventionally vibrated concrete. Mater Struct 42(1):71–82

    Article  Google Scholar 

  4. Mounanga P (2004) Étude expérimentale du comportement de pâtes de ciment au très jeune âge: hydratation, retraits, propriétés thermophysiques (in French), Doctoral thesis, University of Nantes, France

  5. Hua C, Barbieri B, (1998) Comparaison des retraits des bétons autonivelants et d’un béton fluide traditionnel. Science des matériaux et propriétés des bétons, pp 265–272, 1ère Rencontre Internationale, Toulouse, 5-6 mars 1998

  6. Graeye B, De Schutter G, Desmet B, Vantomme J, Heirman G, Vandewalle L, Cizer O, Aggoun S, Kadri EH (2010) Effect of mineral filler type on autogenous shrinkage of selfcompacting concrete. Cem Concr Res 40(6):908–913

    Article  Google Scholar 

  7. Sakata K (1993) Prediction of drying shrinkage and creep of the concrete. Concr J 31(2):5–14

    Google Scholar 

  8. Grondin F, Bouasker M, Mounanga P, Khelidj A, Perronnet A (2010) Physico-chemical deformations of solidifying cementitious systems: multiscale modelling. Mater Struct 43(1):151–165

    Article  Google Scholar 

  9. Pichler C, Lackner R, Mang H (2007) A multiscale micromechanics model for the autogenous-shrinkage deformation of early-age cement-based materials. Eng Fract Mech 74:34–58

    Article  Google Scholar 

  10. Gawin D, Pesavento F, Schrefler BA (2007) Modelling creep and shrinkage of concrete by means of effective stresses. Mater Struct 40(6):579–591

    Article  Google Scholar 

  11. Liu JX, Zhao ZY, Deng SC, Liang NG (2009) A simple method to simulate shrinkage-induced cracking in cement-based composites by lattice-type modelling. Comput Mech 43(4):477–492

    Article  Google Scholar 

  12. Le Roy R (1995) Déformations instantanées et différées des bétons à hautes performances (in French), Doctoral thesis, Ecole National des Ponts et Chaussées, Paris, France

  13. Le Roy R, De Larrard F (1993) Concrete: a three phase material—discussion. Cem Concr Res 24(1):189–193

    Article  Google Scholar 

  14. Eguchia K, Teranishib K (2005) Prediction equation of drying shrinkage of concrete based on composite model. Cem Concr Res 35(3):483–493

    Article  Google Scholar 

  15. Almudaiheem JA (1992) An improved model to predict the ultimate shrinkage of concrete. Mag Concr Res 44(159):81–85

    Article  Google Scholar 

  16. Hashin Z (1962) The elaxtic moduli of heterogeneous materials. J Appl Mech 29:143–150

    Google Scholar 

  17. Kheirbek A (2000) Influence des paramètres de formulation sur les retraits endogène et de dessiccation de la pâte de ciment (in French), Doctoral thesis, Université of Cergy-Pontoise, France

  18. Haddad O, Aggoun S, Nachbaur L, Waller V, Cabrillac R (2005) Extension de la méthode Mortiers Bétons Equivalents aux BAP. Annales du Bâtiment et des Travaux Publics, No 5, octobre 2005, 13–17

  19. Waller V, Haddad O, Nachbaur L, Aggoun S (2005) Estimating SCC early ages strength through simple tests. In: The Second North American conference on the design and use of Self-Consolidating Concrete (SCC05), October 30–November 2, Chicago, Illinois, 757–763

  20. Miao C, Tian Q, Sun W, Liu JP (2007) Water consumption of the early-age paste and the determination of “time-zero” of self-desiccation shrinkage. Cem Concr Res 37(11):1496–1501

    Article  Google Scholar 

  21. Jaouadi I (2008) Etude numérique et expérimentale du retrait endogène de la pâte de ciment au jeune âge (in French), Doctoral thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

  22. Loukili A (1996) Etude du retrait et du fluage des Bétons à Ultra-Hautes Performances (in French), Doctoral thesis, Université of Nantes, France

  23. Nawa T, Horita T (2004) Autogenous shrinkage of high-performance concrete. In: Proceeding of the international workshop on microstructure and durability to predict service life of concrete structures Sapporo, Japan, Feb 2004

  24. Tazawa E, Miyazawa S (1998) Effect of constituents and curing conditions on autogenous shrinkage of concrete. In: Proceeding of the international workshop on autogenous shrinkage of concrete. 13–14 June, Hiroshima, Japan, 257–268

  25. Tazawa E, Miyazawaa S (1995) Influence of cement and admixture on autogenous shrinkage of cement paste. Cem Concr Res 25(2):281–287

    Article  Google Scholar 

  26. Hua C (1992) Analyse et modélisation du retrait d’autodessiccation de la pâte de ciment durcissant (in French), Doctoral thesis, Ecole National des Ponts et Chaussées, Paris, France

  27. Poppe AM (2004) Influence of fillers on hydration and properties of self-compacting concrete (in Dutch), Doctoral thesis, Magnel Laboratory for Concrete Research, Ghent University Belgium

  28. Pigeon M, Toma G, Marchand J, Bissonnette B (2003) Experimental study of early age restrained autogenous shrinkage. Mater Struct 36(10):666–672

    Article  Google Scholar 

  29. Poppe A-M, De Schutter G (2005) Cement hydration in the presence of high filler contents. Cem Concr Res 35(10):2290–2299

    Article  Google Scholar 

  30. Ye G, Liu X, De Schutter G, Poppe A-M, Taerwe L (2007) Influence of limestone powder used as filler in SCC on hydration and microstructure of cement pastes. Cem Concr Compos 29(2):94–102

    Article  Google Scholar 

  31. Ye G, Liu X, Poppe A-M, De Schutter G, Van Breugel K (2007) Numerical simulation of the hydration process and the development of microstructure of self-compacting cement paste containing limestone as filler. Mater Struct 40(9):865–875

    Article  Google Scholar 

  32. Rozière E, Granger S, Turcry Ph, Loukili A (2007) Influence of paste volume on shrinkage cracking and fracture properties of self-compacting concrete. Cem Concr Compos 29(8):626–636

    Article  Google Scholar 

  33. Caquot A. (1935) role des materiaux inertes dans le béton. Mém. Soc. Ingén. Civils France

  34. Bonavetti VL, Rahal VF, Irassar EF (2001) Studies on the carboaluminate formation in limestone filler-blended cements. Cem Concr Res 31(6):853–859

    Article  Google Scholar 

  35. Feldman R, Ramachandran V, Sereda P (1965) Influence of CaCO3 on the Hydration of 3CaO·Al2O3. J Am Ceram Soc 48(1):25–30

    Article  Google Scholar 

  36. Le Roy R, De Larrard F (2006) bétons autoplaçants, déformations instantanées et différées. Avis Technique 3/05-446, CSTB (Centre Scientifique et Technique du Batiment), 2006

  37. Hua C, Acker P, Ehrlacher A (1995) Analyses and models of the autogenous shrinkage of hardening cement paste: I. Modelling at macroscopic scale. Cem Concr Res 25(7):1457–1468

    Article  Google Scholar 

  38. Hua C, Ehrlacher A, Acker P (1997) Analyses and models of the autogenous shrinkage of hardening cement paste: II. Modelling at scale of hydrating grains. Cem Concr Res 27(2):245–258

    Article  Google Scholar 

  39. Bazǎnt Z, Raftshol W (1982) Effect of cracking in drying and shrinkage specimens. Cem Concr Res 12(2):209–226

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Aggoun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alrifai, A., Aggoun, S., Kadri, EH. et al. Influence of aggregate skeleton on shrinkage properties: validation of the model developed by Le Roy for the case of self-compacting concrete. Mater Struct 44, 1593–1607 (2011). https://doi.org/10.1617/s11527-011-9721-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-011-9721-1

Keywords

Navigation