Skip to main content
Log in

State-of-the-art review on timber connections with glued-in steel rods

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Adhesive joints have been known and applied for timber structures for decades. Hybrid joints with glued-in rods are nowadays successfully used for both constructing new and strengthening existing timber structures. Since the 1980s the research and development of timber joints with bonded-in rods have been going on, however agreement regarding design criteria for these connections has not been reached. Today, connections with glued-in rods are not included in the European design code. Thus, it is desired to gather the current state of knowledge to enable application in practice of the existing and documented knowledge and experience. This paper summarizes practical and theoretical approaches from research done regarding joints with glued-in steel rods mostly in Europe and published in English, German or Swedish. The review considers manufacturing methods, mechanisms and parameters governing the performance and strength of the joints, theoretical approaches and existing design recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Abbreviations

( )r :

Property related to rod

( )w :

Property related to wood/timber

A :

Cross-sectional area (mm2)

B :

Width of the fracture area (mm)

C :

Compliance in energy release rate analysis

D :

Diameter of the drilled hole (mm)

E :

Modulus of elasticity (N/mm2)

F/Fa:

Axial resistance (N), (kN)

Fax,k/Ftk:

Characteristic axial resistance (N), (kN)

F ax,d :

Design axial resistance (N), (kN)

F ax,mean :

Mean axial resistance (N), (kN)

G :

Shear stiffness of adhesive layer (N/mm2)

G c :

Critical energy release rate of the joint (J/m2)

G ekv :

Equivalent shear stiffness

G f :

Fracture energy (J/m2)

G f,s :

Fracture energy in shear (J/m2)

L :

Length of adhesive layer (mm)

P u,k :

Characteristic pull-out strength of a single rod (N), (kN)

R sh :

Design shear strength of wood across the grain (N/mm2)

Ra,d/Rax,d:

Design anchorage capacity (N), (kN)

Ra,k/Rax,k:

Characteristic anchorage capacity (N), (kN)

W :

Work by external loads during crack propagation (J)

T :

Kinetic energy (J)

T g :

Critical temperature, or the glass transition temperature (°C)

b :

Width of the timber member (mm)

d/dnom:

Nominal diameter of a rod/screw (mm)

d/dr/da:

Outer diameter of the rod (mm)

dh/h/D:

Diameter of the (drilled) hole (mm)

e :

Edge distance (mm)

f a :

Mean anchorage strength (N/mm2)

f a,d :

Design anchorage strength (N/mm2)

f a,k :

Characteristic anchorage strength (N/mm2)

f a,u :

Anchorage strength (N/mm2)

f k1,k :

Characteristic value of bond line strength (N/mm2)

f v3 :

Strength parameter (N/mm2)

f v,k :

Characteristic shear strength of the wood (N/mm2)

f v,α,k :

Characteristic shear strength of the wood at the angle α between the rod and grain direction (N/mm2)

f v,mean,b :

Mean shear strength of the bond (N/mm2)

f v,0,mean :

Nominal shear strength of single axially loaded rod bonded in parallel to the grain (N/mm2)

f ws :

Withdrawal parameter for the square root case (N/mm1.5)

f wl :

Withdrawal parameter for the linear case (N/mm2)

k b :

Bar type factor (threaded: 1.0, deformed: 0.8)

k d :

Factor to account for the influence of the rod diameter

k e :

Epoxy factor (Araldite 2005: 0.86–1.17)

k m :

Moisture factor

k mod :

Modification factor for duration of load and moisture content

k s :

Factor to account for the influence of ratio of anchorage length divided by rod diameter

k 1 :

Coefficient due to irregular stress distribution along the bar

k 2 :

Reduction factor taking into account irregular force distribution among multiple bars

l/lg/lad/la/lE/lef:

Glued-in length/effective anchorage length (mm)

l m :

Material length parameter

l geo :

Geometrical length parameter

t/t1/t2:

Member thickness (mm)

a :

Angle between rod and grain direction (°) or (rad)

Φ:

Outer diameter of the rod (mm)

λ:

Slenderness ratio

ϕ:

Elastic strain energy (J)

ρ:

Density of the wood/timber (kg/m3)

ρk :

Characteristic density of the wood/timber (kg/m3)

τ:

Shear stress/shear strength (N/mm2)

τf :

Local bondline shear strength (N/mm2)

τmax :

Maximum shear stress (N/mm2)

ω:

Stiffness ratio of the joint

References

  1. Möhler K, Hemmer K (1981) Eingeleimte Gewindestangen. bauen mit holz 83(5):296–298

    Google Scholar 

  2. Riberholt H (1978) Eingeleimte Gewindestangen. Danmarks Tekniske Höjskole, Lyngby. Rapport Nr. R 99

  3. Broughton JG, Hutchinson AR (2001) Adhesive systems for structural connections in timber. Int J Adhes Adhes 21(3):177–186

    Article  Google Scholar 

  4. Fueyo JG, Cabezas JA, Dominguez M (2009) Reduction of perpendicular-to-grain stresses in the apex zone of curved beams using glued-in rods. Mater Struct J 43(4):463–474

    Article  Google Scholar 

  5. Steiger R, Gehri E, Widmann R (2007) Pull-out strength of axially loaded steel rods bonded in glulam parallel to the grain. Mater Struct J 40(1):69–78

    Article  Google Scholar 

  6. Harvey K, Ansell MP, Alexandre N, Mettem CJ, Bainbridge RJ (2000) Bonded-in pultrusions for moment resisting timber connections. Paper 33-7-11. In: Proceedings of 33rd conference of CIB-W18, Delft, The Netherlands

  7. Harvey K, Ansell MP (2000) Improved timber connections using bonded-in GFRP rods. In: Proceedings of the 6th world conference on timber engineering, Whistler, Canada

  8. Serrano E (2001) Glued-in rods for timber structures—a 3D model and finite element parameter studies. Int J Adhes Adhes 21(2):115–127

    Article  MathSciNet  Google Scholar 

  9. Serrano E (2001) Glued-in rods for timber structures—an experimental study of softening behaviour. Mater Struct J 34(4):228–234

    Article  Google Scholar 

  10. Johansson C-J (1995) Glued-in bolts. In: Timber engineering, STEP 1 basis of design, material properties, structural components and joints, Centrum Hout, Almere, The Netherlands

  11. Kangas J, Kevarinmäki A (2001) Quality control of connections based on V-shaped glued-in steel rods. Paper 34-7-4. In: Proceedings of 34th conference of CIB-W18, Venice, Italy

  12. Kangas J (2000) Capacity, fire resistance and gluing pattern of the rods in V-connections. Paper 33-7-10. In: Proceedings of 33rd conference of CIB-W18, Delft, The Netherlands

  13. Müller J, Von Roth W (1991) Untersuchungen zum Tragverhalten von parallel zur Faser in Nadelholz eingeleimten Stäben aus unterschiedlichen Materialien. Holz als Roh- und Werkstoff 49(3):85–90

    Article  Google Scholar 

  14. Kemmsies M (1999) Comparison of pull-out strength of 12 adhesives for glued-in rods for timber structures. SP REPORT 1999:20. SP Swedish National Testing and Research Institute, Building Technology, Borås

    Google Scholar 

  15. Gustafsson PJ, Serrano E (2001) Glued-in rods for timber structures—development of a calculation model. Report TVSM-3056. Lund University, Division of Structural Mechanics, Lund

    Google Scholar 

  16. Aicher S (2003) Structural adhesive joints including glued-in rods. In: Thelandersson S, Larsen HJ (eds) Timber engineering. Wiley, Chichester

    Google Scholar 

  17. Steiger R, Gheri E, Widmann R (2004) Glued-in rods: a design approach for axially loaded single rods set parallel to the grain. Paper 37-7-8. In: Proceedings of 37th conference of CIB-W18, Edinburgh, Scotland

  18. Serrano E, Steiger R, Lavisci P (2008) Glued-in rods. In: Bonding of timber—core document of the COST Action E34. Lignovisionen Issue 18, pp 31–39

  19. Batchelar ML, McIntosh KA (1998) Structural joints in glulam. In: Proceedings of 5th world conference in timber engineering, Montreux, Switzerland

  20. Madhoushi M, Ansell MP (2008) Behaviour of timber connections using glued-in GFRP rods under fatigue loading. Part II: Moment-resisting connections. Compos Part B Eng 39(2):249–257

    Article  Google Scholar 

  21. Madhoushi M, Ansell MP (2004) Flexural fatigue of beam to beam connections using glued-in GFRP rods. In: Proceedings of 8th world conference in timber engineering, Lahti, Finland

  22. Carling O (1992) Dimensionering av träkonstruktioner. AB Svensk Byggtjänst och Trätek, Stockholm, Sweden

    Google Scholar 

  23. Faye C, Le Magorou L, Morlier P, Surleau J (2004) French data concerning glued-in rods. Paper 37-7-10. In: Proceedings of 37th conference of CIB-W18, Edinburgh, Scotland

  24. Johansson Jänkänpää L (2008) Limmade förband i stora träkonstruktioner. Master Thesis, Luleå University of Technology, Luleå, Sweden

  25. Bainbridge RJ, Mettem CJ (1998) A review of moment-resistant structural timber connections. Struct Build Eng 128(4):323–331

    Article  Google Scholar 

  26. Edlund G (1975) I limträ inlimmad skruv. Svenska träforskningsinstitutet (STFI). Meddelande Serie B, Nr. 333. Stockholm, Sweden

  27. Rossignon A, Espion B (2008) Experimental assessment of the pull-out strength of single rods bonded in glulam parallel to the grain. Holz als Roh- und Werkstoff 66(6):419–432

    Article  Google Scholar 

  28. Alam P, Ansell MP, Smedley D (2004) Reinforcement of LVL beams with bonded-in plates and rods—effect of placement of steel and FRP reinforcements on beam strength and stiffness. Paper 37-12-2. In: Proceedings of the 37th conference of CIB-W18, Edinburgh, Scotland

  29. Bainbridge RJ, Mettem CJ, Ansell MP (2002) Bonded-in rod connections for timber structures—development of design methods and test observations. Int J Adhes Adhes 22(1):47–59

    Article  Google Scholar 

  30. Gerold M (1992) Verbund von Holz und Gewindestangen aus Stahl. Bautechnik 69(4):167–178

    Google Scholar 

  31. Meierhofer U (1988) Schraubenauszugsfestigkeit und Tragfähigkeit von Fichten- und Tannenholz. Holz als Roh- und Werkstoff 46(1):15–17

    Article  Google Scholar 

  32. Swiss Society of Engineers and Architects SIA (2003) Design Code SIA 265 Timber Structures. SIA, Zurich

    Google Scholar 

  33. Deng JX (1997) Strength of epoxy bonded steel connections in glued laminated timber. Civil Engineering research report 97/4. Department of Civil Engineering, University of Canterbury, Christchurch

    Google Scholar 

  34. Pedersen MU, Clorius CO, Damkilde L, Hoffmeyer P (1999) Strength of glued-in bolts after full scale loading. J Perform Constr Facil 13(3):107–113

    Article  Google Scholar 

  35. Dunky M, Källander B, Properzi M, Richter K, Leemput V (eds) (2008) Core document of the COST Action E34: bonding of timber. University of Natural Resources and Applied Life Sciences, Vienna

  36. Moss PJ, Buchanan AH, Wong KL (2000) Moment-resisting connections in glulam beams. In: Proceedings of 6th world conference on timber engineering, Vancouver, Canada

  37. Vašek M (2008) Semi rigid timber frame and space structure connections by glued-in rods. In: Proceedings of the 10th world conference on timber engineering, Miyazaki, Japan

  38. Vašek M, Vyhnálek R (2006) Timber semi rigid frame with glued-in-rods joints. In: Proceedings of the 9th world conference on timber engineering, Portland, OR, USA

  39. Volkersen O (1938) Die Nietkraftverteilung in zugbeanspruchten Nietverbindungen mit konstanten Laschenquerschnitten. Luftfahrtforschung 15(1/2):41–47

    Google Scholar 

  40. Volkersen O (1953) Die Schubkraftverteilung in Leim-, Niet- und Bolzenverbindungen. Teile 1 bis 3. Energie und Technik 5(3):68–71; 5(5):103–108; 5(7):150–154

  41. Thelandersson S, Larsen HJ (eds) (2003) Timber engineering. Wiley, Chichester

  42. Goland M, Reissner E (1944) The stresses in cemented joints. J Appl Mech Trans ASME 66(11):A17–A27

    Google Scholar 

  43. Hart-Smith LJ (1973) Adhesive-bonded single-lap joints. L. R. C. Hampton, Long Beach

    Google Scholar 

  44. Serrano E, Gustafsson P (2006) Fracture mechanics in timber engineering—strength analyses of components and joints. Mater Struct J 40(1):87–96

    Article  Google Scholar 

  45. Gustafsson P J (1987) Analysis of generalized Volkersen-joints in terms of non-linear fracture mechanics. Paper 20-18-2. In: Proceedings of the 20th conference of CIB-W18, Dublin, Ireland

  46. Bengtsson C, Johansson C-J (2001) GIROD—glued-in rods for timber structures. Paper 34-7-8. In: Proceedings of the 34th conference of CIB-W18, Venice, Italy

  47. Otero Chans D, Cimadevila JE, Gutiérrez EM (2008) Glued joints in hardwood timber. Int J Adhes Adhes 28(8):457–463

    Article  Google Scholar 

  48. Aicher S, Gustafsson PJ, Wolf M (1999) Load displacement and bond strength of glued-in rods in timber influenced by adhesive, wood density, rod slenderness and diameter. In: Proceedings of the international RILEM symposium on timber engineering, Stockholm, Sweden

  49. Gehri E (2000) Klassische Verbindungen neu betrachtet. In: Proceedings of the 17th Dreiländer Holztagung, Lucerne, Switzerland

  50. Gustafsson P J, Serrano E, Aicher S, Johansson C-J (2001) A strength design equation for glued-in rods. In: Proceedings of the international RILEM symposium on joints in timber structures, Stuttgart, Germany

  51. Riberholt H (1988) Glued bolts in glulam—proposals for CIB code. Paper 21-7-2. In: Proceedings of the 21st conference of CIB-W18, Parksville, Canada

  52. Broughton JG, Hutchinson AR (2001) Pull-out behaviour of steel rods bonded into timber. Mater Struct J 34(2):100–109

    Article  Google Scholar 

  53. Gerold M (1993) Anwendung von in Holz eingebrachten, in Schaftrichtung beanspruchten Gewindestangen aus Stahl. Bautechnik 70(10):603–613

    Google Scholar 

  54. Blass HJ, Laskewitz B (1999) Effect of spacing and edge distance on the axial strength of glued-in rods. Paper 32-7-12. In: Proceedings of 32nd conference of CIB-W18, Graz, Austria

  55. del Senno M, Piazza M, Tomasi R (2004) Axial glued-in steel timber joints—experimental and numerical analysis. Holz als Roh- und Werkstoff 62(2):137–146

    Article  Google Scholar 

  56. Deutsches Institut für Normung e.V. DIN (2004) Norm DIN 1052:2004-08 Entwurf, Berechnung und Bemessung von Holzbauwerken. DIN, Berlin, Germany

  57. Widmann R, Steiger R, Gehri E (2007) Pull-out strength of axially loaded steel rods bonded in glulam perpendicular to the grain. Mater Struct J 40(8):827–838

    Article  Google Scholar 

  58. Bainbridge RJ, Mettem CJ, Harvey K, Ansell MP (2000) Fatigue performance of bonded-in rods in glulam, using three adhesive types. Paper 33-7-12. In: Proceedings of 33rd conference of CIB-W18, Delft, The Netherlands

  59. Steiger R, Köhler J (2005) Analysis of censored data—examples in timber engineering research. Paper 38-17-1. In: Proceedings of the 38th conference of CIB-W18, Karlsruhe, Germany

  60. Blass H J, Laskewitz B (2001) Load carrying capacity of axially loaded rods glued in perpendicular to the grain. In: Proceedings of the international RILEM symposium on joints in timber structures, Stuttgart, Germany

  61. Bengtsson C, Johansson C-J (2000) Test methods for glued-in rods for timber structures. Paper 33-7-8. In: Proceedings of 33rd conference of CIB-W18, Delft, The Netherlands

  62. Bernasconi A (2001) Axially loaded glued-in rods for high capacity joints—behaviour and resistance. In: Proceedings of the international RILEM symposium on joints in timber structures, Stuttgart, Germany

  63. European Committee for Standardization CEN (1997) Eurocode 5—design of timber structures—Part 2: Bridges ENV 1995-2:1997. CEN, Brussels

    Google Scholar 

  64. Ehlbeck J (1976) Versuche mit Sondernägeln für den Holzbau. Holz als Roh- und Werkstoff 34(7):205–211

    Article  Google Scholar 

  65. Görlacher R (1990) Untersuchungen an altem Konstruktionsholz: Die Ausziehwiderstandsmessung. bauen mit holz 92(12):904–908

    Google Scholar 

  66. Werner H, Siebert W (1991) Neue Untersuchungen mit Nägeln für den Holzbau. Holz als Roh- und Werkstoff 49(5):191–198

    Article  Google Scholar 

  67. Ehlbeck J, Belchior-Gaspard P, Gerold M (1991) Praktikable Einleimmethoden und Wirkungsweisen von eingeleimten Gewindestangen unter Axialbelastung bei Übertragung von grossen Kräften und bei Aufnahme von Querzugkräften in Biegeträgern. Teil 2: Einfluss von Klimaeinwirkung und Langzeitbelastung. Research report, Versuchsanstalt für Stahl, Holz und Steine, Abt. Ingenieurholzbau, University of Karlsruhe, Germany

  68. Bernasconi A (2001) Behaviour of axially loaded glued-in rods—requirements and resistance, especially for spruce timber perpendicular to the grain direction. Paper 34-7-6. In: Proceedings of 34th conference of CIB-W18, Venice, Italy

  69. Aicher S, Dill-Langer G (2001) Influence of moisture, temperature and load duration on performance of glued-in rods. In: Proceedings of the international RILEM symposium on joints in timber structures, Stuttgart, Germany

  70. Buchanan AH (1994) Fire resistance of epoxied steel rods in glulam timber. In: Proceedings of Pacific timber engineering conference, Gold Coast, Australia

  71. Gardelle V, Morlier P (2007) Geometric parameters which affect the short term resistance of an axially loaded glued-in rod. Mater Struct J 40(1):127–138

    Article  Google Scholar 

  72. Gehri E (2001) Ductile behaviour and group effect of glued-in steel rods. In: Proceedings of the international RILEM symposium on joints in timber structures, Stuttgart, Germany

  73. Turkovsky SB (1989) Designing of glued wood structures joints on glued-in bars. Paper 22-7-13. In: Proceedings of the 22nd conference of CIB-W18, Berlin, German Democratic Republic

  74. Buchanan AH, Moss PJ, Wong N (2001) Ductile moment-resisting connections in glulam beams. In: Proceedings of NZSEE conference, Wairakei Resort, Taupo, New Zealand

  75. Gattesco N, Gubana A (2006) Performance of glued-in joints of timber members. In: Proceedings of the 9th world conference on timber engineering, Portland, Oregon, USA

  76. Baroth J, Bode L, Bressolette P, Fournely E, Racher P (2004) Glued-in rod connections in bending: experiment and stochastic finite-element modelling. In: Proceedings of the 8th world conference on timber engineering, Lahti, Finland

  77. Källander B (2004) Glued in rods in load bearing timber structures—status regarding European standards for test procedures. Paper 37-7-9. In: Proceedings of 37th conference of CIB-W18, Edinburgh, Scotland

  78. Riberholt H (1986) Glued bolts in glulam. Paper 19-7-2. In: Proceedings of the 19th conference of CIB-W18, Florence, Italy

  79. Ehlbeck J, Siebert W (1987) Praktikable Einleimmethoden und Wirkungsweisen von eingeleimten Gewindestangen unter Axialbelastung bei Übertragung von grossen Kräften und bei Aufnahme von Querzugkräften in Biegeträgern. Teil 1: Einleimmethoden, Messverfahren, Haftspannungsverlauf. Research report, Versuchsanstalt für Stahl, Holz und Steine, Abt. Ingenieurholzbau, University of Karlsruhe, Germany

  80. Aicher S, Herr J (1997) Bonded glulam-steel rod connections with long anchorage length. Otto-Graf-J 8:232–254

    Google Scholar 

  81. (2009) Typgodkännandebevis 1396/78: I limträ inlimmade skruv, SP Sveriges Tekniska Institut, SP SITAC, Karlskrona, Sweden

  82. Kangas J (1993) Design of joints based on in V-shape glued-in rods. Paper 26-7-4. In: Proceedings of the 26th conference of CIB-W18, Athens, Georgia, USA

  83. Kangas J (1994) Joints of glulam structures based on glued-in ribbed steel rods. VTT Publication 196, Espoo

  84. Buchanan AH, Deng XJ (1996) Strength of steel rods in glulam timber. In: Proceedings of international wood engineering conference, New Orleans, LA, USA

  85. European Committee for Standardization CEN (2003) prEN 1995-2 Eurocode 5—design of timber structures, Part 2: Bridges. Final Project Team draft (Stage 34). Document CEN/TC 250/SC 5: N 198. CEN, Brussels

    Google Scholar 

  86. European Committee for Standardization CEN (2003) Minutes of the sixteenth meeting of CEN/TC 250/SC 5, 9th–10th October 2003 in Delft, The Netherlands. Document CEN/TC 250/SC 5: N 209. CEN, Brussels

  87. Deutsches Institut für Normung e.V. DIN (2008) Norm 1052:2008-12 Entwurf, Berechnung und Bemessung von Holzbauwerken. DIN, Berlin

    Google Scholar 

  88. Blass HJ, Eberhart O, Ehlbeck J, Gerold M (1996) Wirkungsweise von eingeleimten Gewindestangen bei der Aufnahme von Querzugkräften in gekrümmten Biegeträgern und Entwicklung von Bemessungsgrundlagen, Teil 3. Forschungsbericht T 2744. Fraunhofer IRB Verlag, Stuttgart

    Google Scholar 

  89. Carling O (2001) Limträhandbok. Svensk Limträ AB, Stockholm, Sweden

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Tlustochowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tlustochowicz, G., Serrano, E. & Steiger, R. State-of-the-art review on timber connections with glued-in steel rods. Mater Struct 44, 997–1020 (2011). https://doi.org/10.1617/s11527-010-9682-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-010-9682-9

Keywords

Navigation