Skip to main content
Log in

RETRACTED ARTICLE: The effects of curing medium on flexural strength and water permeability of concrete incorporating TiO2 nanoparticles

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

This article was retracted on 09 August 2021

This article has been updated

Abstract

The effect of limewater on flexural strength and water permeability of TiO2 nanoparticles binary blended concrete has been investigated. TiO2 nanoparticles with partial replacement of cement by 0.5, 1.0, 1.5 and 2.0 weight percent have been used as reinforcement. Curing of the specimens has been carried out in water and saturated limewater for 7, 28 and 90 days after casting. The results indicate that TiO2 nanoparticles up to maximum replacement level of 2.0% produces concrete with improved flexural strength and water permeability when the specimens cured in saturated limewater with respect to the specimens cured in water. TiO2 nanoparticles can improve the filler effect and also the high pozzolanic action of fine particles increases substantially the quantity of strengthening gel. Although the limewater curing medium could not improve the compressive strength of concrete with respect to the water curing medium, incorporating nanoparticles could cause more strength and resistance to water permeability for the specimens cured in saturated limewater with respect to the specimens cured in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. Qing Y, Zenan Z, Deyu K, Rongshen C (2007) Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr Build Mater 21:539–545

    Article  Google Scholar 

  2. Jo BW, Kim CH, Tae GH, Park JB (2007) Characteristics of cement mortar with nano-SiO2 particles. Constr Build Mater 21:1351–1355

    Article  Google Scholar 

  3. Jo BW, Kim CH, Lim JH (2007) Investigations on the development of powder concrete with nano-SiO2 particles. KSCE J 11(1):37–42

    Article  Google Scholar 

  4. Jo BW, Kim CH, Lim JH (2007) Characteristics of cement mortar with nano-SiO2 particles. ACI Mater J 104(4):404–407

    Google Scholar 

  5. Lin KL, Changb WC, Linc DF, Luoc HF, Tsai MC (2008) Effects of nano-SiO2 and different ash particle sizes on sludge ash–cement mortar. J Environ Manage 88(4):708–714

    Article  Google Scholar 

  6. Lin DF, Lin KL, Chang WC, Luo HL, Cai MQ (2008) Improvements of nano-SiO2 on sludge/fly ash mortar. Waste Manage 28(6):1081–1087

    Article  Google Scholar 

  7. Shih JY, Chang TP, Hsiao TC (2006) Effect of nanosilica on characterization of Portland cement composite. Cem Concr Res 36:697–706

    Article  Google Scholar 

  8. Campillo I, Guerrero A, Dolado JS, Porro A, Ibáñez JA, Goñi S (2007) Improvement of initial mechanical strength by nanoalumina in belite cements. Mater Lett 61:1889–1892

    Article  Google Scholar 

  9. Li Z, Wang H, He S, Lu Y, Wang M (2006) Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite. Mater Lett 60:356–359

    Article  Google Scholar 

  10. Li H, Xiao H, Ou J (2004) A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cem Concr Res 34:435–438

    Article  Google Scholar 

  11. Flores-Velez LM, Dominguez O (2002) Characterization and properties of Portland cement composites incorporating zinc–iron oxide nanoparticles. J Mater Sci 37:983–988

    Article  Google Scholar 

  12. Nazari A, Riahi Sh, Riahi Sh, Shamekhi SF, Khademno A (2010) Mechanical properties of cement mortar with Al2O3 nanoparticles. J Am Sci 6(4):94–97

    Google Scholar 

  13. Nazari A, Riahi Sh, Riahi Sh, Shamekhi SF, Khademno A (2010) The effects of incorporation Fe2O3 nanoparticles on tensile and flexural strength of concrete. J Am Sci 6(4):90–93

    Google Scholar 

  14. Nazari A, Riahi Sh, Riahi Sh, Shamekhi SF, Khademno A (2010) Improvement the mechanical properties of the concrete by using TiO2 nanoparticles. J Am Sci 6(4):98–101

    Google Scholar 

  15. Nazari A, Riahi Sh, Riahi Sh, Shamekhi SF, Khademno A (2010) Embedded TiO2 nanoparticles mechanical properties monitoring in cementitious composites. J Am Sci 6(4):86–89

    Google Scholar 

  16. Nazari A, Riahi Sh, Riahi Sh, Shamekhi SF, Khademno A (2010) Benefits of Fe2O3 nanoparticles in concrete mixing matrix. J Am Sci 6(4):102–106

    Google Scholar 

  17. Nazari A, Riahi Sh, Riahi Sh, Shamekhi SF, Khademno A (2010) Assessment of the effects of the cement paste composite in presence TiO2 nanoparticles. J Am Sci 6(4):43–46

    Google Scholar 

  18. Nazari A, Riahi Sh, Riahi Sh, Shamekhi SF, Khademno A (2010) An investigation on the strength and workability of cement based concrete performance by using TiO2 nanoparticles. J Am Sci 6(4):29–33

    Google Scholar 

  19. Nazari A, Riahi Sh, Riahi Sh, Shamekhi SF, Khademno A (2010) Influence of Al2O3 nanoparticles on the compressive strength and workability of blended concrete. J Am Sci 6(5):6–9

    Google Scholar 

  20. Li H, Zhang MH, Ou JP (2007) Flexural fatigue performance of concrete containing nano-particles for pavement. Int J Fatigue 29:1292–1301

    Article  Google Scholar 

  21. Li H, Zhang MH, Ou JP (2006) Abrasion resistance of concrete containing nano-particles for pavement. Wear J 260:1262–1266

    Article  Google Scholar 

  22. Katyal NK, Ahluwalia SC, Parkash Ram (1999) Effect of TiO2 on the hydration of tricalcium silicate. Cem Concr Res 29:1851–1855

    Article  Google Scholar 

  23. ASTM C150 (2001) Standard specification for Portland cement, annual book of ASTM standards. ASTM, Philadelphia

    Google Scholar 

  24. ASTM C293 (2001) Standard test method for flexural strength of concrete (using simple beam with center-point loading). ASTM, Philadelphia

    Google Scholar 

  25. ASTM C642 (2001) Standard test method for density, absorption, and voids in hardened concrete. ASTM, Philadelphia

    Google Scholar 

  26. Hall C (1989) Water sorptivity of mortars and concretes: a review. Mag Concr Res 41(14):51–61

    Article  Google Scholar 

  27. ASTM C1585 (2001) Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes. ASTM, Philadelphia

    Google Scholar 

  28. Ganesan K, Rajagopal K, Thangavel K (2008) Rice husk ash blended cement: assessment of optimal level of replacement for strength and permeability properties of concrete. Constr Build Mater 22(8):1675–1683

    Article  Google Scholar 

  29. Ransinchung GD, Kumar B, Kumar V (2009) Assessment of water absorption and chloride ion penetration of pavement quality concrete admixed with wollastonite and microsilica. Constr Build Mater 23(2):1168–1177

    Article  Google Scholar 

  30. Powers TC (1968) Properties of fresh concrete. Wiley, New York

    Google Scholar 

  31. Abell AB, Willis KL, Lange DA (1999) Mercury intrusion porosimetry and image analysis of cement-based materials. J Colloid Interface Sci 211:39–44

    Article  Google Scholar 

  32. Tanaka K, Kurumisawa K (2002) Development of technique for observing pores in hardened cement paste. Cem Concr Res 32:1435–1441

    Article  Google Scholar 

  33. Bui DD, Hu J, Stroeven P (2005) Particle size effect on the strength of rice husk ash blended gap-graded Portland cement concrete. Cem Concr Compos 27(3):357–366

    Article  Google Scholar 

  34. AI-Khalaf MN, Yousift HA (1984) Use of rice husk ash in concrete. Int J Cem Compos Lightweight Concr 6(4):241–248

    Article  Google Scholar 

  35. Prabir BC (2001) High performance concrete: mechanism and application. ICI J 2(1):15–38

    Google Scholar 

  36. Martys NS, Ferraris CF (1997) Capillary transport in mortars and concrete. Cem Concr Res 27(5):747–760

    Article  Google Scholar 

  37. Tasdemir C (2003) Combined effects of mineral admixtures and curing conditions on the sorptivity coefficients of concrete. Cem Concr Res 33:1637–1642

    Article  Google Scholar 

  38. Wee TH, Suryavanshi JA, Tin SS (2000) Evaluation of rapid chloride permeability test (RCPT) results for concrete containing mineral admixtures. ACI Mater J 97(2):221–232

    Google Scholar 

  39. Cook JD (1986) Rice husk ash. In: Swamy RN (ed) Concrete technology and design, cement replacement materials, vol 3. Surrey University Press, London, pp 171–195

    Google Scholar 

  40. Philleo RE (1986) Freezing and thawing resistance of high-strength concrete. NCHRP synthesis of highway practice 129, Transportation Research Board, p 31

  41. Powers TC, Copeland LE, Mann HM (1959) Capillary continuity or discontinuity in cement paste. J PCA Res Dev Lab 1(2):38–48

    Google Scholar 

  42. Lin YH, Tyan YY, Chang TP, Chang CY (2004) An assessment of optimal mixture for concrete made with recycled concrete aggregates. Cem Concr Res 34(8):1373–1380

    Article  Google Scholar 

  43. Tattersall GH, Baker PH (1989) An instigation of the effect of vibration on the workability of fresh concrete using a vertical pipe apparatus. Mag Concr Res 14(146):3–9

    Article  Google Scholar 

  44. Wu ZW, Lian HZ (1999) High performance concrete. Railway Press of China, Beijing, p 43

    Google Scholar 

  45. Ye Q (2001) The study and development of the nano-composite cement structure materials. New Build Mater 1:4–6

    Google Scholar 

  46. Jawed J, Skalny J, Young JF (1983) Hydration of Portland cement. In: Barnes P (ed) Structure and performance of cements. Applied Science Publishers, Barking, pp 284–285

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Nazari.

About this article

Cite this article

Nazari, A. RETRACTED ARTICLE: The effects of curing medium on flexural strength and water permeability of concrete incorporating TiO2 nanoparticles. Mater Struct 44, 773–786 (2011). https://doi.org/10.1617/s11527-010-9664-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-010-9664-y

Keywords

Navigation