Skip to main content
Log in

RETRACTED ARTICLE: Resistance to acid attack, abrasion and leaching behavior of alkali-activated mine waste binders

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

This article was retracted on 09 July 2021

This article has been updated

Abstract

This paper report results of a research project on the development of alkali-activated binders using mine wastes. Abrasion and acid resistance of two ordinary Portland cement (OPC) strength class concrete mixtures (C20/25 and C30/37) and several mine waste (MW) mixtures were compared. This study indicates that MW binders possess higher acid and abrasion resistance than OPC based concrete mixtures. The leaching assessment of the MW binders shows it can be considered an inert material which indicates that it could be used as a building material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Gartner E (2004) Industrially interesting approaches to low-CO2 cements. Cem Concr Res 34:1489–1498. doi:10.1016/j.cemconres.2004.01.021

    Article  Google Scholar 

  2. Damtoft J, Lukasik J, Herfort D, Sorrentino D, Gartner E (2008) Sustainable development and climate change initiatives. Cem Concr Res 38:115–127. doi:10.1016/j.cemconres.2007.09.008

    Article  Google Scholar 

  3. Duxson P, Van Deventer J (2009) Commercialization of geopolymers for construction—opportunities and obstacles. In: Provis J, Van Deventer J (eds) Geopolymers, structure, processing, properties and applications. Woodhead Publishing Limited Abington Hall, Cambridge, UK, pp 379–400, ISBN-13: 978 1 84569 449 4

  4. Weil M, Dombrowski K, Buchawald A (2009) Life-cycle analysis of geopolymers. In: Provis J, Van Deventer J (eds) Geopolymers, structure, processing, properties and applications. Woodhead Publishing Limited Abington Hall, Cambridge, UK, pp 194–210, ISBN-13:978 1 84569 449 4

  5. Xu H, Van Deventer JSJ (2000) The geopolymerisation of alumino-silicate minerals. Int J Miner Process 59:247–266. doi:10.1016/S0301-7516(99)00074-5

    Article  Google Scholar 

  6. Barbosa F, MacKenzie K, Thaumaturgo C (2000) Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. Int J Inorg Polym 2:309–317. doi:10.1016/S1466-6049(00)00041-6

    Article  Google Scholar 

  7. Pacheco-Torgal F, Castro Gomes JP, Jalali S (2008) Alkali-activated binders: a review part 2 about materials and binders manufacture. Construct Build Mater 22:1315–1322. doi:10.1016/j.conbuildmat.2007.03.019

    Article  Google Scholar 

  8. Vance E, Perera D (2009) Geopolymers for nuclear waste immobilization. In: Provis J, Van Deventer J (eds) Geopolymers, structure, processing, properties and applications. Woodhead Publishing Limited Abington Hall, Cambridge, UK, pp 401–420, ISBN-13: 978 1 84569 449 4

  9. Vinsova H, Jedinakova-Krizova, Gric L, Sussmilch J (2007) Immobilization of toxic contaminants into aluminosilicate matrixes. In: Agentura Action (ed) Proceedings of the 2007—alkali activated materials—research, production and utilization 3rd conference. Prague, Czech Republic, pp 735–736, ISBN 978-80-867-42-19-9

  10. Provis J (2009) Immobilisation of toxic wastes in geopolymers. In: Provis J, Van Deventer J (eds) Geopolymers, structure,processing, properties and applications. Woodhead Publishing Limited Abington Hall, Cambridge, UK, pp 421–440, ISBN-13: 978 1 84569 449 4

  11. Bakharev AT (2005) Geopolymeric materials prepared using class F fly ash and elevated temperature curing. Cem Concr Res 35:1224–1232. doi:10.1016/j.cemconres.2004.06.031

    Article  Google Scholar 

  12. MacKenzie K, Brew D, Fletcher R, Nicholson C, Vagana R, Schmucker M (2005) Towards an understanding of the synthesis mechanisms of geopolymer materials. In: Proceedings of the world geopolymer (2005), geopolymer green chemestry and sustainable development solutions, S. Quentin, France, pp 41–44

  13. Fernandez-Jimenez, Palomo A (2005) Composition and microstructure of alkali activated fly ash binder: effect of the activator. Cem Concr Res 35:1984–1992. doi:10.1016/j.cemconres.2005.03.003

  14. Weng L, Sagoe-Crentsil K, Brown T, Song S (2005) Effects of aluminates on the formation of geopolymers. Mater Sci Eng 117:163–168. doi:10.1016/j.mseb.2004.11.008

    Article  Google Scholar 

  15. Alonso S, Palomo A (2001) Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio. Mater Lett 47:55–62. doi:10.1016/S0167-577X(00)00212-3

    Article  Google Scholar 

  16. Yip CK, Van Deventer SJS (2003) Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder. J Mater Sci 38:3851–3860

    Article  Google Scholar 

  17. Yip CK, Lukey GC, Van Deventer SJS (2005) The coexistence of geopolymeric gel and calcium silicate hydrate gel at the early stage of alkaline activation. Cem Concr Res 35:1688–1697. doi:10.1016/j.cemconres.2004.10.042

    Article  Google Scholar 

  18. Buchwald A, Dombrowski K, Weil M (2005) The influence of calcium content on the performance of geopolymeric binder especially the resistance against acids. In: Proceedings of the world geopolymer 2005, geopolymer green chemestry and sustainable development solutions, S. Quentin, France, pp 35–39

  19. Yip CK, Lukey GC, Provis J, Van Deventer SJS (2008) Effect of calcium silicate sources on geopolymerization. Cem Concr Res 38:554–564. doi:10.1016/S0892-6875(01)00002-4

    Article  Google Scholar 

  20. Pinto A (2004) Metakaolin alkali-activated based binders. Ph.D Thesis, University of Minho, Portugal

  21. Pinto A, Fernandes P, Jalali S (2002) Geopolymer manufacture and applications—main problems when using concrete technology. In: Proceedings of 2002 geopolymer conference. Melbourne, Australia

  22. Aguilar A, Diaz O, Garcia J (2010) Lightweight concretes of activated metakaolin-fly ash binders, with blast furnace slag aggregates. Construct Build Mater 24:1166–1175. doi:10.1016/j.conbuildmat.2009.12.024

    Article  Google Scholar 

  23. Duxson P, Provis J, Lukey G, Van Deventer JSJ (2007) The role of inorganic polymer technology in the development of “green concrete”. Cem Concr Res 37:1590–1597. doi:10.1016/j.cemconres.2007.08.018

    Article  Google Scholar 

  24. Allahverdi A, Kani E (2009) Construction wastes as raw materials for geopolymer binders. Int J Civil Eng 7:154–160

    Google Scholar 

  25. Kourti I, Rani D, Deegan D, Boccaccini A, Cheeseman C (2010) Production of geopolymers using glass produced from DC plasma treatment of air pollution control (APC) residues. J Hazard Mater 176:704–709. doi:10.1016/j.jhazmat.2009.11.089

    Article  Google Scholar 

  26. Vance E, Perera D, Imperia P, Cassidy D, Davis J, Gourley J (2010) Perlite waste as a precursor for geopolymer formation. J Aust Ceram Soc 45:44–49

    Google Scholar 

  27. Zheng L, Wang C, Wang W, Shi Y, Gao X (2010) Immobilization of MSWI fly ash through geopolymerization: effects of water-wash. Waste Manag (in press) doi:10.1016/j.wasman.2010.05.015

  28. Pacheco-Torgal F, Castro Gomes JP, Jalali S (2007) Effect of aggregates on strength and microstructure of geopolymeric mine waste mud binders. Cem Concr Res 37:933–941. doi:10.1016/j.cemconres.2007.02.006

    Article  Google Scholar 

  29. Pacheco-Torgal F, Castro Gomes JP, Jalali Said (2008) Investigations on mix design of tungsten mine waste geopolymeric binders. Constr Build Mater 22:1939–1949. doi:10.1016/j.conbuildmat.2007.07.015

    Article  Google Scholar 

  30. Pacheco-Torgal F, Castro Gomes JP, Jalali S (2008) Properties of tungsten mine waste geopolymeric binder. Constr Build Mater 22:1201–1211. doi:10.1016/j.conbuildmat.2007.01.022

    Article  Google Scholar 

  31. Pacheco-Torgal F, Castro Gomes JP, Jalali S (2008) Investigations of tungsten mine waste geopolymeric binders. Strength and microstructure. Constr Build Mater 22:2212–2219. doi:10.1016/j.conbuildmat.2007.08.003

    Article  Google Scholar 

  32. Pacheco-Torgal F, Jalali S (2010) Influence of sodium carbonate addition on the thermal reactivity of tungsten mine waste mud based binders. Constr Build Mater 24:56–60. doi:10.1016/j.conbuildmat.2009.08.018

    Article  Google Scholar 

  33. He C, Makovic E, Osbaeck B (1995) Thermal stability and pozzolanic activity of raw and calcined illite. Appl Clay Sci 9:337–354. doi:10.1016/0169-1317(94)00033-M

    Article  Google Scholar 

  34. Salvador S (1995) Pozzolanic properties of flash-calcined kaolinite. A comparative study with soak-calcinated products. Cem Concr Res 25:102–112. doi:10.1016/0008-8846(94)00118-I

    Article  Google Scholar 

  35. Salvador S (2000) A semi-mobile flash dryer/calciner unit manufacture pozzolana from raw clay soils—application to soil stabilization. Constr Build Mater 14:109–117. doi:10.1016/S0950-0618(00)00005-2

    Article  Google Scholar 

  36. Faury J (1958) Le Beton. Influence de ses constituents inerts. Regles á adopter pour sameilheure composition. Sa confection et son transport sur les chantier, 3rd edn. Dunod, Paris

    Google Scholar 

  37. Hassan KE, Brooks JJ, Al-Alawi L (2001) Compatibility of repair mortars with concrete in a hot-dry environment. Cem Concr Compos 23:93–101. doi:10.1016/S0958-9465(00)00073-1

    Article  Google Scholar 

  38. DIN 38414-S4 (1984) German Standard methods for the examination of water, waste water and sludge. Sludge and sediments (Group S). Determination of leachability (S4)

  39. Hu S, Wang H, Zhang G, Ding Q (2008) Bonding and abrasion resistance of geopolymeric repair material made with steel slag. Cem Concr Compos 30:239–244. doi:10.1016/j.cemconcomp.2007.04.004

    Article  Google Scholar 

  40. Ghafoori N, Surandar BM (1995) Abrasion resistance of concrete block pavements. ACI Concr Int 1:25–36

    Google Scholar 

  41. Neville AM (1997) Properties of concrete, 4th and final edition

  42. Zivica, V.; Bazja, A. (2001) Acid attack of cement based materials—a review. Part 1 principle of acid attack. Constr Build Mater 15:331–340. doi:10.1016/S0950-0618(01)00012-5

  43. Allahverdi A, Škvára F (2001) Nitric acid attack on hardened paste of geopolymeric cements—part 1. Ceramics-Silikaty 45:81–88

    Google Scholar 

  44. Allahverdi A, Škvára F (2001) Nitric acid attack on hardened paste of geopolymeric cements—part 2. Ceramics-Silikaty 45:143–149

    Google Scholar 

  45. Allahverdi A, Škvára F (2005) Sulfuric acid attack on hardened paste of geopolymer cements. Part 1. Mechanism of corrosion at relatively high concentrations. Ceramics-Silikaty 49:225–229

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pacheco-Torgal Fernando.

About this article

Cite this article

Fernando, PT., Said, J. RETRACTED ARTICLE: Resistance to acid attack, abrasion and leaching behavior of alkali-activated mine waste binders. Mater Struct 44, 487–498 (2011). https://doi.org/10.1617/s11527-010-9643-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-010-9643-3

Keywords

Navigation