Skip to main content
Log in

Evaluation of UHPFRC activation energy using empirical models

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The influence of thermal curing on the evolution of the material properties and the UHPFRC behaviour was investigated. Tests results showed a beneficial effect of a high temperature curing on the early age material properties due to the thermo-activation effect on the hydration process. However, an inverse effect was observed at long-term. In our study, activation energy of UHPFRC was evaluated from experimental data by means of empirical models. The traditional maturity-function based on Arrhenius law, generally used to describe thermally activated physical or chemical processes, was used to predict the evolution of the UHPFRC autogenous shrinkage and to validate the applicability of this concept for such cement-based materials. Results showed that the concept based on Arrhenius law could describe correctly temperature effects on UHPFRC for temperature lower than 30°C.

Résumé

L’influence de la cure thermique sur l’évolution des propriétés et du comportement du Béton Fibré Ultra Performant (BFUP) a été étudiée. Les résultats d’essais ont montré l’effet bénéfique des températures élevées sur les propriétés du matériau au jeune âge à cause de la thermo-activation du processus d’hydratation. Néanmoins, un effet inverse a été observé à long terme. Dans cette étude, l’énergie d’activation du BFUP a été évaluée à partir des résultats expérimentaux par le biais de modèles empiriques. Le concept de maturité traditionnel basé sur la loi d’Arrhenius, généralement utilisé pour décrire l’activation thermique des processus physiques et chimiques, a été utilisé pour prédire l’évolution du retrait endogène du BFUP et pour valider l’application de ce concept pour de tels matériaux cimentaires. Les résultats ont montré que le concept basé sur la loi d’Arrhenius décrit correctement l’effet thermique sur le BFUP pour des températures inférieures à 30°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kamen A (2007a) Comportement au jeune âge et différé d’un béton écrouissant sous les effets thermomécaniques. Doctoral thesis, The Ecole Polytechnique Fédérale de Lausanne, Suisse, No. 3827, 246 pp (in French)

  2. Carino NJ, Lew HS (2001) The maturity method: from theory to application. In: Chang PC (ed) Proceedings of the structures congress and exposition, May 21–23, Washington, DC. American Society of Civil Engineers, Reston, Virginia, 19 pp

  3. Hansen PF, Pedersen EJ (1977) Maturity Computer for controlled curing and hardening of concrete. Nord Betong 1(19):21–25

    Google Scholar 

  4. Jensen OM, Hansen PF (1999) Influence of temperature on autogenous deformation and relative humidity change in hardening cement paste. Cement Concr Res 29:567–575. 10.1016/S0008-8846(99)00021-6

    Article  Google Scholar 

  5. Bjontegaard O (1999) Thermal dilatation and autogenous deformation as driving forces to self-induced stresses in high performance concrete. Doctoral thesis, The University of Trondheim, Norway, 256 pp

  6. Loukili A, Chopin D, Khelidj A, Le Touzo J-Y (2000) A new approach to determine autogenous shrinkage of mortar at an early age considering temperature history. Cement Concr Res 30:915–922. 10.1016/S0008-8846(00)00241-6

    Article  Google Scholar 

  7. Turcry P, Loukili A, Casabonne JM (2002) Can the maturity concept be used to separate the autogenous shrinkage and thermal deformation of a cement paste at early age. Cement Concr Res 32:1143–1450. doi:10.1016/S0008-8846(02)00800-1

    Article  Google Scholar 

  8. Mounouga P (2004) Etude expérimentale du comportement de pâtes de ciment au très jeune âge: hydratation, retraits, propriétés thermophysiques. Doctoral thesis, The University of Nantes, France, 217 pp (in French)

  9. Rossi P, Arca A, Parant E, Fakhri P (2005) Bending and compressive behaviours of a new cement composite. Cement Concr Res 33:27–33. doi:10.1016/j.cemconres.2004.05.043

    Article  Google Scholar 

  10. Habel K (2004) Structural behaviour of elements combining ultra-high performance fibre-reinforced concretes (UHPFRC) and concrete. Doctoral thesis, The Ecole Polytechnique Fédérale de Lausanne, Suisse, No. 3036, 195 pp

  11. Kamen A, Denarié E, Brühwiler E (2006) Physico mechanical properties of ultra high performances fibre reinforced concrete. In: Proceedings of the first mediterranean symposium in advances on geomaterial and structures. Hammamet, Tunisia, 3–5 May, pp 643–648

  12. Kamen A,Denarié E, Brühwiler E (2005) Mechanical behavior of ultra high performance fiber reinforced concretes (UHPFRC) at early age, and under restraint. In: Pijaudier-Cabot G, Gérard B, Acker P (eds) Proceedings of the CONCREEP 7, September 12–14, 2005, Nantes, France. Hermès Publishing, pp 591–596

  13. Kamen A (2006) Time dependent behaviour of ultra high performance fibre reinforced concrete. In: Proceedings of the 6th international PhD symposium in civil engineering, Zurich, August 23–26 (book with extended summaries and CD-ROM with full papers)

  14. Verbeck GJ, Helmuth RH (1969) Structure and physical properties of cement paste. In: Proceedings of the 5th international congress on the chemistry of cement, Tokyo, Japan, pp 1–32

  15. Kjellsen KO, Detwiler RJ, Gjorv OE (1991) Development of microstructures in plain cement pastes hydrated at different temperatures. Cement Concr Res 21:179–189. doi:10.1016/0008-8846(91)90044-I

    Article  Google Scholar 

  16. Kjellsen KO, Detwiler RJ (1992) Reaction kinetics of portland cement mortars hydrated at different temperatures. Cement Concr Res 22:112–120. doi:10.1016/0008-8846(92)90141-H

    Article  Google Scholar 

  17. Kamen A, Denarié E, Brühwiler E (2007) Thermal effects on physico-mechanical properties of UHPFRC. ACI Mater J 104(4):415–423

    Google Scholar 

  18. Charron J-P (2003) Contribution à l’étude du comportement au jeune âge des matériaux cimentaires en conditions des déformations libre et restreinte. Doctoral thesis, The University of Laval, Québec, Canada, 332 pp (in French)

  19. Barnett SJ, Soutsos MN, Millard SG, Bungey JH (2006) Strength development of mortars containing ground granulated blast-furnace slag: Effect of curing temperature and determination of apparent activation energies. Cement Concr Res 36:434–440. doi:10.1016/j.cemconres.2005.11.002

    Article  Google Scholar 

  20. Rilem TC 119-TCE (1997) Avoidance of thermal cracking in concrete at early ages. Materials and Structures RILEM, 30:451–464

    Article  Google Scholar 

  21. Carino JN, Molhotra VM (1991) Maturity method. In: Molhotra VM, Carino JN (eds) CRC handbook on non-destructive testing of concrete. CRC Press, pp 101–146

  22. Jonasson JE Groth P, Hedlund H (1995) Modeling of temperature and moisture field in concrete to study early age movements as a basis for stress analysis. In: Proceedings of the int. RILEM symp. on thermal cracking in concrete at early age, E &FN SPON, London, pp 45–52

  23. ASTM C 1074 (1998) Standard practice for estimating concrete strength by the maturity method. ASTM C 1074 International, West Conshohocken (cited by Schindler AK (2004) ACI Mater J 101(9):72–80)

  24. Kjellsen KO, Detwiler RJ (1993) Later-age strength prediction by a modified maturity model. ACI Mater J 90:220–226

    Google Scholar 

  25. Pane I, Hansen W (2002) Concrete hydration and mechanical properties under nonisothermal conditions. ACI Mater J 99:534–542

    Google Scholar 

  26. Schindler AK (2004) Effect of temperature on hydration of cementitious materials. ACI Mater J 101(9):72–80

    Google Scholar 

  27. Tank RC, Carino JN (1991) Rate constant functions for strength development of concrete. ACI Mater J 88(1):74–83

    Google Scholar 

  28. Guo C (1989) Maturity of concrete: method for predicting early stage strength. ACI Mater J 86:341–353

    Google Scholar 

  29. Carino NJ, Tank RC (1992) Maturity functions for concretes made with various cements and admixtures. ACI Mater J 89(2):188–196

    Google Scholar 

  30. Ma W, Sample D, Martin R, Brown PW (1994) Calorimetric study of cement blends containing fly ash, silica fume and slag at elevated temperatures. Cement Concr Agg 16(2):93–99. doi:10.1016/0958-9465(94)90004-3

    Article  Google Scholar 

  31. Korhonen U, Vilhonen E (1963) On the calculation of activation energy in thermal activation rate processes. Acta Polytech Scand, Series Ch. N° 22

Download references

Acknowledgments

This project was financially supported by the Swiss National Science Foundation and by the Swiss Federal Office for Education and Science in the context of the European project “Sustainable and Advanced Materials for Road Infrastructures” (SAMARIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kamen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamen, A., Denarié, E., Sadouki, H. et al. Evaluation of UHPFRC activation energy using empirical models. Mater Struct 42, 527–537 (2009). https://doi.org/10.1617/s11527-008-9400-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-008-9400-z

Keywords

Navigation