Skip to main content
Log in

Wave propagation in cementitious material containing artificial distributed damage

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The propagation of ultrasonic pulses through highly inhomogeneous mortar is discussed in this paper. The inhomogeneity is introduced by light plastic inclusions in different volume contents to simulate distributed damage. Wave propagation in such media becomes dispersive and therefore, although pulse velocity is influenced, other easily measured features are much more indicative of the inclusion content. These features can certainly improve characterization since they include information from the whole waveform and not only the leading edge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aggelis DG, Shiotani T (2007) Repair evaluation of concrete cracks using surface and through-transmission wave measurements. Cem Concr Composit 29:700–711

    Article  Google Scholar 

  2. Malhotra VM, Carino NJ (eds) (1991) CRC handbook on nondestructive testing of concrete. CRC Press, Florida

    Google Scholar 

  3. Ohtsu M, Watanabe T (2002) Stack imaging of spectral amplitudes based on impact-echo for flaw detection. NDT & E Int 35(3):189–196

    Article  Google Scholar 

  4. Popovics S (2001) Analysis of the Concrete Strength versus Ultrasonic Pulse Velocity Relationship. Mater Eval 59(2):123–130

    Google Scholar 

  5. Popovics S, Popovics JS (1991) Effect of stresses on the ultrasonic pulse velocity in concrete. Mater Struct 24:15–23

    Article  Google Scholar 

  6. Van Hauwaert A, Thimus JF, Delannay F (1998) Use of ultrasonics to follow crack growth. Ultrasonics 36:209–217

    Article  Google Scholar 

  7. Kaplan MF (1959) The effects of age and water/cement ratio upon the relation between ultrasonic pulse velocity and compressive strength. Magn Concr Res 11(32):85–92

    Google Scholar 

  8. Jones R (1953) Testing of concrete by ultrasonic-pulse technique, Proceedings of the thirty-second annual meeting. Highway Res Board 32:258–275

  9. Anderson DA, Seals RK (1981) Pulse velocity as a predictor of 28- and 90-day strength. ACI J 78–9(2):116–122

    Google Scholar 

  10. Qasrawi HY (2000) Concrete strength by combined nondestructive methods simply and reliably predicted. Cem Concr Res 30:739–746

    Article  Google Scholar 

  11. Kheder GF (1999) A two stage procedure for assessment of in situ concrete strength using combined non-destructive testing. Mater Struct 32:410–417

    Article  Google Scholar 

  12. Mikulic D, Pause Z, Ukraincik V (1999) Determination of concrete quality in a structure by combination of destructive and non-destructive methods. Mater Struct 25:65–69

    Article  Google Scholar 

  13. Aggelis DG, Shiotani T (2008) Effect of inhomogeneity parameters on wave propagation in cementitious material. ACI Mater J 105(2):187–193

    Google Scholar 

  14. Chaix JF, Garnier V, Corneloup G (2006) Ultrasonic wave propagation in heterogeneous solid media: Theoretical analysis and experimental validation. Ultrasonics 44:200–210

    Article  Google Scholar 

  15. Shiotani T, Aggelis DG (2006) Damage quantification of aging concrete structures by means of NDT. Structural Faults and Repair-2006, 13–15 June, Edinburgh (in CD-ROM)

  16. Philippidis TP, Aggelis DG (2005) Experimental study of wave dispersion and attenuation in concrete. Ultrasonics 43:584–595

    Article  Google Scholar 

  17. Aggelis DG, Philippidis TP (2004) Ultrasonic wave dispersion and attenuation in fresh mortar. NDT & E Int 37(8):617–631

    Article  Google Scholar 

  18. Owino JO, Jacobs LJ (1999) Attenuation measurements in cement-based materials using laser ultrasonics. J Eng Mech-ASCE 125(6):637–647

    Article  Google Scholar 

  19. Jacobs LJ, Owino J (2000) Effect of aggregate size on attenuation of Rayleigh surface waves in cement-based materials. J Eng Mech-ASCE 126(11):1124–1130

    Article  Google Scholar 

  20. Becker J, Jacobs LJ, Qu J (2003) Characterization of cement-based materials using diffuse ultrasound. J Eng Mech-ASCE 129(12):1478–1484

    Article  Google Scholar 

  21. Anugonda P, Wiehn JS, Turner JA (2001) Diffusion of ultrasound in concrete. Ultrasonics 39:429–435

    Article  Google Scholar 

  22. Landis EN, Shah SP (1995) Frequency-dependent stress wave attenuation in cement-based materials. J Eng Mech-ASCE 121(6):737–743

    Article  Google Scholar 

  23. Sayers CM, Dahlin A (1993) Propagation of ultrasound through hydrating cement pastes at early times. Adv Cem Mater 1:12–21

    Article  Google Scholar 

  24. Aggelis DG, Polyzos D, Philippidis TP (2005) Wave dispersion and attenuation in fresh mortar: theoretical predictions vs. experimental results. J Mech Phys Solids 53:857–883

    Article  MATH  Google Scholar 

  25. Punurai W, Jarzynski J, Qu J, Kurtis KE, Jacobs LJ (2006) Characterization of entrained air voids in cement paste with scattered ultrasound. NDT & E Int 39(6):514–524

    Article  Google Scholar 

  26. Hernandez MG, Anaya JJ, Ullate LG, Cegarra M, Sanchez T (2006) Application of a micromechanical model of three phases to estimating the porosity of mortar by ultrasound. Cem Concr Res 36(4):617–624

    Article  Google Scholar 

  27. Aggelis DG, Shiotani T (2007) Surface wave propagation in strongly heterogeneous media. J Acoust Soc Am 122(5):EL151–EL157

    Article  Google Scholar 

  28. Tsinopoulos SV, Verbis JT, Polyzos D (2000) An iterative effective medium approximation for wave dispersion and attenuation predictions in particulate composites. Adv Composit Lett 9:193–200

    Google Scholar 

  29. Aggelis DG, Tsinopoulos SV, Polyzos D (2004) An iterative effective medium approximation (IEMA) for wave dispersion and attenuation predictions in particulate composites, suspensions and emulsions. J Acoust Soc Am 116(6):3443–3452

    Article  Google Scholar 

  30. Foldy LL (1945) The multiple scattering of waves. Phys Rev 67:107–119

    Article  MATH  MathSciNet  Google Scholar 

  31. Ying CF, Truell R (1956) Scattering of a plane longitudinal wave by a spherical obstacle in an isotropically elastic solid. J Appl Phys 27:1086–1097

    Article  MATH  MathSciNet  Google Scholar 

  32. Waterman PC, Truell R (1961) Multiple scattering of waves. J Math Phys 2:512–537

    Article  MATH  MathSciNet  Google Scholar 

  33. Otsuki N, Iwanami M, Miyazato S, Hara N (2000) Influence of aggregates on ultrasonic elastic wave propagation in concrete. In: Uomoto T (ed) Non-destructive testing in civil engineering. Elsevier, Amsterdam, pp 313–322

    Chapter  Google Scholar 

  34. AGU-Vallen Wavelet, R2005.1121, http://www.vallen.de

  35. Washer GA, Green RE, Pond RB (2002) Velocity constants for ultrasonic stress measurement in prestressing tendons. Res Nondestruct Eval 14:81–94

    Google Scholar 

  36. Cowan ML, Beaty K, Page JH, Zhengyou L, Sheng P (1998) Group velocity of acoustic waves in strongly scattering media: Dependence on the volume fraction of scatterers. Phys Rev E 58(5):6626–6636

    Article  Google Scholar 

  37. Selleck SF, Landis EN, Peterson ML, Shah SP, Achenbach JD (1998) Ultrasonic investigation of concrete with distributed damage. ACI Mater J 95(1):27–36

    Google Scholar 

  38. Shah SP, Popovics JS, Subramanian KV, Aldea CM (2000) New directions in concrete health monitoring technology. J Eng Mech-ASCE 12126(7):754–760

    Article  Google Scholar 

  39. Kruger M (2005) Scanning impact-echo techniques for crack depth determination. Otto-Graf-J 16:245–257

    Google Scholar 

  40. Shiotani T, Aggelis DG (2007) Determination of Surface Crack Depth and Repair Effectiveness using Rayleigh Waves. In: Carpinteri A, Gambarova P, Ferro G, Plizzari G (eds) Fracture mechanics of concrete and concrete structures—design, assessment and retrofitting of RC structures. Taylor & Francis, London, UK, pp 1011–1018

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Shiotani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiotani, T., Aggelis, D.G. Wave propagation in cementitious material containing artificial distributed damage. Mater Struct 42, 377–384 (2009). https://doi.org/10.1617/s11527-008-9388-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-008-9388-4

Keywords

Navigation