Skip to main content
Log in

Condition assessment of concrete in hydraulic structures by surface wave non-destructive testing

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Maintenance and rehabilitation of concrete structures affected by alkali-aggregate reaction (AAR) require conducting detailed assessment of the concrete conditions, mainly close to the surface where the damage is more severe. This paper presents in situ investigations by surface wave testing of near-surface AAR damage in two hydraulic structures. The survey was carried out using a non-intrusive multi-sensor method that involves frequency–wavenumber analysis of surface waves. The method allows solving Rayleigh surface wave propagation modes required for the determination of the shear wave velocity in terms of depth. The variation of Young’s modulus with concrete depth can be estimated from the obtained shear wave velocity profile. Two different cases of surface wave propagation, typical of concrete structures, are discussed in this paper. The tests were conducted from the concrete surface only and the subsurface quality was mapped up to a depth of 1.50 m. The applications show that the proposed surface wave method is a potential non-destructive evaluation method that can be used to detect and locate near surface damage in concrete structures.

Résumé

La maintenance et la réhabilitation des structures en béton atteintes de Réaction Alcalis-Granulats (RAG) requièrent une étude détaillée de la qualité du béton, principalement près de la surface où l’endommagement est le plus sévère. Cet article présente les résultats d’investigation par ondes de surface de l’endommagement attribuable à la RAG dans deux structures hydrauliques. Les mesures ont été effectuées en utilisant une méthode non intrusive à plusieurs capteurs, qui intègre l’analyse fréquence-nombre d’onde des ondes de surface. Cette méthode permet de résoudre les modes de propagation des ondes Rayleigh de surface, nécessaires pour la détermination de la vitesse des ondes de cisaillement en fonction de la profondeur. La variation du module d’élasticité avec la profondeur peut être estimée à partir du profil de vitesse des ondes de cisaillement obtenu. Deux cas différents de propagation des ondes de surface, typiques pour les structures en béton, sont discutés dans cet article. Les tests ont été effectués à partir de la surface du béton seulement, et la qualité du béton a été cartographiée jusqu’à une profondeur égale à 1.5 m. Les présentes applications montrent une méthode non destructive potentielle qui peut être utilisée pour détecter et localiser l’endommagement près de la surface du béton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

f :

Frequency

λ:

Wavelength

V ph :

Phase velocity

Na :

Number of accelerometers

dx :

Spacing between each couple of accelerometers

d :

Distance between the source and the nearest accelerometer

Np :

Number of positions of the source at the concrete surface

D :

Desired depth of investigation

h :

Layer thickness

E :

Young’s modulus

ν:

Poisson’s ratio

ρ:

Mass density

V P :

Pressure wave velocity

V S :

Shear wave velocity

R-f :

Fundamental mode of Rayleigh waves

A-f :

Antisymmetrical fundamental-mode of Lamb waves

S-f :

Symmetrical fundamental-mode of Lamb waves

References

  1. Jones RB (1958) In-situ measurement of the dynamic properties of soil by vibration methods. Geotechnique 8:1–21

    Google Scholar 

  2. Nazarian S (1984) In situ determination of elastic moduli of soil deposits and pavement systems by spectral analysis of surface waves method. Ph.D. thesis, University of Texas at Austin

  3. Stokoe KH, Wright SG, Bay JA and Roesset JM (1994) Characterization of geotechnical sites by SASW method. In: Proceedings of the geophysical characterization of sites, ISSMFE Technical Committee 10, New Delhi

  4. Gucunski N, Woods RD (1991) Use of Rayleigh modes in interpretation of SASW test. In: Proceedings of the second international conference on recent advances in geotechnical earthquake engineering and soil dynamics, St. Louis, pp 1399–1408

  5. Tokimatsu K, Tamura S, Kojima H (1992) Effects of multiple modes on Rayleigh wave dispersion. J Geotech Eng ASCE 118:1529–1543

    Article  Google Scholar 

  6. Karray M, Lefebvre G (2000) Identification and isolation of multiple modes in Rayleigh waves testing methods. In: Proceedings of the use of geophysical methods in construction, sessions of Geo-Denver, ASCE, Denver, pp 80–94

  7. Park CB, Miller RD, Xia J (1999) Multichannel analysis of surface waves. Geophysics 64:800–808

    Article  Google Scholar 

  8. Gabriels P, Snieder R, Nolet G (1987) In situ measurement of shear wave velocity in sediments with higher-mode Rayleigh waves. Geophys Prospect 35:187–196

    Article  Google Scholar 

  9. Al Wardany R, Ballivy G, Gallias JL, Saleh K, Rhazi J (2007) Assessment of concrete slab quality and layering by guided and surface wave testing. ACI Mater J 104:268–275

    Google Scholar 

  10. Al Wardany R, Gravel C, Charbonneau D (2005) Évaluation de l’état de l’endommagement des plots 13 et 17 nord de l’écluse St-Lambert par tomographie sonique. Technical Report No. GR-05-08-01, University of Sherbrooke

  11. Rayleigh L (1885) On waves propagating along the plane surface of an elastic solid. In: Proceedings of the London Mathematical Society, London, pp 4–11

  12. Schwab F, Knopoff L (1970) Surface wave dispersion computations. Bull Seismol Soc Am 60:321–344

    Google Scholar 

  13. Rix GJ, Leipski EA (1991) Accuracy and resolution of surface wave inversion. In: Proceedings of recent advances in instrumentation, data acquisition and testing of soil dynamics, ASCE Geotechnical Special Publication, Orlando, pp 17–32

  14. Addo KO, Robertson PK (1992) Shear-wave velocity measurement of soils using Rayleigh waves. Can Geotech J 29:558–568

    Article  Google Scholar 

  15. Hermann R (1996) Computer programs in seismology. Saint Louis University

  16. Nafe JE, Drake CL (1960) Physical properties of marine sediments. In: Hill MN (ed) The sea 3. Interscience, New York, pp 794–815

    Google Scholar 

  17. Viktorov IA (1967) Rayleigh and Lamb waves: physical theory and applications. Plenum Publishing Corporation, New York

    Google Scholar 

  18. Lamb H (1917) On waves in an elastic plate. In: Proceedings of the Royal Society of London, pp 114–128

  19. Whitehurst EA (1951) Soniscope tests concrete structures. ACI J Proc 47:433–444

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council (NSERC)-Industry Research Chair on Concrete NDT and Instrumentation, industrial partners (HydroQuebec and St. Lawrence Seaway) and the University of Sherbrooke. The authors thank Clermont Gravel, Danick Charbonneau and Francois Saint-Pierre from University of Sherbrooke for their help in data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riad Al Wardany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al Wardany, R., Ballivy, G. & Rivard, P. Condition assessment of concrete in hydraulic structures by surface wave non-destructive testing. Mater Struct 42, 251–261 (2009). https://doi.org/10.1617/s11527-008-9382-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-008-9382-x

Keywords

Mots Clés

Navigation