Skip to main content
Log in

A comparison of different failure criteria in a numerical seismic assessment of an industrial brickwork chimney

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

A theoretical analysis using three well-known masonry analysis constitutive models is performed on a masonry structure to simulate the response of the structure to specific seismic forces. The results of the three numerical approaches are compared and a discussion is presented, mainly intended for professionals, concerning the suitability of the three models and the limitations of each numerical approach. The aim of the study is to evaluate the relative accuracy of the three different models and their suitability for determining the failure mode of the masonry chimney. The models studied are: a linear elastic constitutive model, an elastic-plastic Drucker-Prager’s type model and a model including cracking and/or crushing in the material using Willam-Warnke’s criterion. A macromodelling approach is used because of the great number of elements forming the structure and the computational demand. Seismic actions are synthetically generated and scaled until chimney failure, in accordance with the present regulations on seismic-proof constructions in Europe and Spain. Conclusions for researchers and professionals are obtained to determine the suitability of each model according to the results required and the available calculation capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Riva G, Zorgno AM (1995) Old brickwork chimneys: structural features and restoration problems. In: 4th International Conference on Structural Studies, Repairs and Maintenance of Historical Buildings, STREMAH ‘95, Comp Mech Publications, Southampton, Boston, vol 2, Dynamics, Repairs &Restoration, 1995, pp 317–327

  2. Pistone G, Riva G, Zorgno AM (1995) Structural behaviour of ancient chimneys. In: 5th Internal Conference on Structural Studies, Repairs and Maintenance of Historical Buildings, STREMAH ‘95, Comp Mech Publications, Southampton, Boston, vol 3, Advances in Architecture Series, 1995, pp 331–341

  3. Pallarés FJ, Agüero A, Martín M (2006) Seismic behaviour of industrial masonry chimneys. Int J Solids Struct 43(7–8):2076–2090

    Article  Google Scholar 

  4. Aoki T, Sabia D (2006) Structural characterization of a brick chimney by experimental tests and numerical model updating. Masonry Int 19(2):41–52

    Google Scholar 

  5. Pallarés FJ (2005) Contribución al análisis sísmico de chimeneas industriales de obra de fábrica mediante el método de los elementos finitos. PhD Thesis (in Spanish). Universidad Politécnica de Valencia

  6. Ghobarah A, Baumber T (1992) Seismic response and retrofit of industrial brick masonry chimneys. Can J Civil Eng 19:117–128

    Article  Google Scholar 

  7. Eurocode 8: Design provisions for earthquake resistance of structures. Part 1-1: general rules. Seismic actions and general requirements for structures

  8. Norma de Construcción Sismorresistente: Parte General y Edificación (NCSE-02) (2002) Ministerio de Fomento, (Spanish Standard)

  9. Zienkiewicz OC, Taylor RL (1991) The finite element method, 4th edn. McGraw-Hill, London

    Google Scholar 

  10. Lourenço PB, Rots JG (1997) Multisurface interface model for analysis of masonry structures. J Eng Mech 123(7):660–668

    Article  Google Scholar 

  11. Lotfi HR, Shing PB (1991) An appraisal of smeared crack models for masonry shear wall analysis. Comput Struct 41(3):413–425

    Article  Google Scholar 

  12. Middleton J, Pande GN, Liang JX, Kralj B (1991) Some recent advances in computer methods in structural masonry. Computer methods in structural masonry. In: Middleton J, Pande GN (eds) Books and Journals International, Swansea, UK, pp 1–21

  13. Genna F, Di Pasqua M, Veroli M, Ronca P (1998) Numerical analysis of old masonry buildings: a comparison among constitutive models. Eng Struct 20(1–2):37–53

    Article  Google Scholar 

  14. Costa A, Arêde A (2006) Strengthening of structures damaged by the Azores earthquake of 1998. Construct Build Mater 20:252–268

    Article  Google Scholar 

  15. Oliveira DV, Lourenço PB (2004) Implementation and validation of a constitutive model for the cyclic behaviour of interface elements. Comput Struct 82:1451–1461

    Article  Google Scholar 

  16. De Castro DV (2002) Experimental and numerical analysis of Blocky masonry structures under cyclic loading. Thesis, Escola de Engenharia, Universidade do Minho

  17. Gouilly A (1876) Théorie sur la Stabilité des Hautes Cheminées en Maçonnerie. J Dejey & Cia Imprimeurs

  18. Esselborn C (1952) Tratado General de Construcción: Parte 1, Construcción de Edificios. Gustavo Gili (ed), Buenos Aires, Argentina

  19. Pallarés FJ, Martín M (2001) Industrial chimneys in Valencia City. Structural response model (in Spanish). VI International Seminar Forum UNESCO, 2001

  20. Gasparini DA, Vanmarcke EH (1976) Simulated earthquake motions compatible with prescribed response spectra. Massachusetts Institute of Technology, Cambridge, Massachusetts

    Google Scholar 

  21. Álvarez A (1904) Manual del Ingeniero. Adrián Romo (ed), Madrid, Spain

  22. Mazzocchi L (1965) Memorial Técnico. Dossat (ed) (in Spanish)

  23. Naraine K, Shina S (1991) Model for cyclic compressive behavior of brick masonry. ACI Struct J 88(5):603–609

    Google Scholar 

  24. Addessi D, Marfia S, Sacco E (2002) A plastic local nondamage model. Comput Methods Appl Mech Eng 191:1291–310

    Article  MATH  Google Scholar 

  25. Cerioni R, Brighenti R, Donida G (1995) Use of incompatible displacement modes in a finite element model to analyze the dynamic behavior of unreinforced masonry panels. Comput Struct 57(1):47–57

    Article  MATH  Google Scholar 

  26. Kappos AJ, Penelis GG, Drakopoulos CG (2002) Evaluation of simplified models for lateral load analysis of unreinforced masonry buildings. J Struct Eng 128(7):890–897

    Article  Google Scholar 

  27. Dhanasekar M, Page AW, Kleeman PW (1985) The failure of brick masonry under biaxial stresses. Proc ICE (part 2) 79:295–313

    Google Scholar 

  28. Litewka A, Szojda L (2006) Damage, plasticity and failure of ceramics and cementitious composites subjected to multi-axial state of stress. Int J Plast 22:2048–2065

    Article  MATH  Google Scholar 

  29. Drucker DC, Prager W (1952) Soil mechanics and plastic analysis or limit design. Q Appl Math 10:157–165

    MATH  MathSciNet  Google Scholar 

  30. Willam KJ, Warncke ED (1975) Constitutive model for the triaxial behaviour of concrete. Proceedings of the International Association for Bridge and Structural Engineering, 1975, 19. ISMES. Bergamo, Italy

  31. Chen WF, Saleeb AF (1982) Constitutive equations for engineering materials, vol 1. Elasticity and Modeling. John Wiley and Sons

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Pallarés.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pallarés, F.J., Agüero, A. & Ivorra, S. A comparison of different failure criteria in a numerical seismic assessment of an industrial brickwork chimney. Mater Struct 42, 213–226 (2009). https://doi.org/10.1617/s11527-008-9379-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-008-9379-5

Keywords

Navigation