Materials and Structures

, Volume 42, Issue 1, pp 51–69 | Cite as

Plastic analysis of HSC beams in flexure

Original Article

Abstract

This article presents an experimental study on the plastic behaviour of HSC beams in bending. Nineteen isostatic beams were tested up to failure. The loading consisted of two symmetrical concentrated forces applied approximately at thirds of the span of the beams. The main purpose of the analysis is to characterize the plastic rotation capacity in the beams’ failure section with an experimental parameter. Bearing this in mind, a global plastic analysis of the tested beams is presented. The main variables of this study are the longitudinal tensile reinforcement ratio and the compressive strength of the concrete. The results obtained here are completed with others presented before and the whole set of results is analysed and discussed. The plastic rotation capacity of the tested beams are analysed with the rules of some codes of practice. Finally, a summary of the main conclusions is presented.

Keywords

Plastic rotation capacity Beams High strength concrete Reinforced concrete 

Résumé

Ce travail décrit une etude expérimentale sur la capacité de rotation plastique de poutres en béton à haute résistance soumises à la flexion. Dix-neuf poutres isostatiques ont été testées jusqu´à la rupture avec une charge constituée par deux forces concentrées et symétriques situées environ au tiers et aux deux tiers de la portée. L´objectif principal de l´analyse est de caractériser la capacité de rotation plastique de la section de rupture avec un paramètre de la tendance plastique. Pour ceci, une analyse plastique globale des poutres testées est présentée. La résistance du béton et le taux d´armatures longitudinales de traction constituent les variables principals de cette étude. Les résultats sont complétés avec ceux d´études précédentes et sont analysés et comparés. La capacité de rotation plastique des poutres est analysée faces aux règles de quelques codes importants aussi bien faces à certaines recommendations publiées. Finallement, un sommaire des principales conclusions est présenté.

References

  1. 1.
    ACI Committee 318 (2005) Building code requirements for structural concrete, (ACI 318-05) and commentary (ACI 318R-05). American Concrete Institute, Detroit, MIGoogle Scholar
  2. 2.
    ACI Committee 363 (1984) State-of-the-art report on high-strength concrete. ACI Struct J 81:364–411Google Scholar
  3. 3.
    Ahmad SH, Barker R (1991) Flexural behaviour of reinforced high-strength lightweight concrete beams. ACI Struct J 88(1):69–77Google Scholar
  4. 4.
    Bernardo LFA, Lopes SMR (2003) Flexural ductility of HSC beams. Struct Concrete J Fib 4(3):135–154CrossRefGoogle Scholar
  5. 5.
    Bernardo LFA, Lopes SMR (2004) Neutral axis depth versus flexural ductility in high-strength concrete beams. J Struct Eng 130(3):452–459CrossRefGoogle Scholar
  6. 6.
    Carmo RNF, Lopes SMR (2005) Ductility and linear analysis with moment redistribution in reinforced high strength concrete beams. Can J Civil Eng 32(1):194–203CrossRefGoogle Scholar
  7. 7.
    CEB (1995) High performance concrete. Bulletin d’Information no. 228Google Scholar
  8. 8.
    CEB (1998) Ductility of reinforced concrete structures. Bulletin d’Information no. 242, May 1998Google Scholar
  9. 9.
    CEB-FIP (1990) Model Code 1990. Lausanne, SuisseGoogle Scholar
  10. 10.
    CEN, EN 1992-1-1 (2004) Eurocode 2: design of concrete structures – part 1.1: general rules and rules for buildings. European Committee for Standardization, BrusselsGoogle Scholar
  11. 11.
    CSA (2004) A23.3-04, Design of concrete structures. Canadian Standards Association, OntarioGoogle Scholar
  12. 12.
    Dahl KKB (1992) Uniaxial stress–strain curve for normal and high strength concrete. Report no. 182. Department of Structural Engineering, Technical University of Denmark, 58 ppGoogle Scholar
  13. 13.
    Hansen EA, Tomaszewicz A (1990) Effect of confinement on the ductility of structural members with high strength concrete. SINTEF report STF65 F90071, Trondheim, pp 184–191Google Scholar
  14. 14.
    Ko MY, Kim SW, Kim JK (2001) Experimental study on the plastic rotation capacity of reinforced high strength concrete beams. Mater Struct 34:302–311CrossRefGoogle Scholar
  15. 15.
    Lambotte H, Taerwe L (1990) Deflection and cracking of HSC beams and slabs. ACI special publication 121, paper no. 7, November 1990Google Scholar
  16. 16.
    Leslie KE, Rajagopalan KS, Everard NJ (1976) Flexural behaviour of HSC beams. ACI J 73(9):517–521Google Scholar
  17. 17.
    Lopes SMR, Bernardo LFA (2003) Plastic rotation capacity of HSC beams. Mater Struct/Matér Construct 36:22–31Google Scholar
  18. 18.
    Mendis P (2003) Design of high-strength concrete members: state-of-the-art. Progr Struct Eng Mech J 5(1):1–15CrossRefGoogle Scholar
  19. 19.
    Naaman AE, Harajli MH, Wight JK (1986) Analysis of ductility in partially prestressed concrete flexural members. PCI J 31(3):64–87Google Scholar
  20. 20.
    Pam HJ, Kwan A, Islam MS (2001) Flexural strength and ductility of reinforced normal and high strength concrete beams. Proc Inst Civil Eng Struct Build 146(4):381–389Google Scholar
  21. 21.
    Pastor JA, Nilson AH, Slate FO (1984) Behaviour of high-strength concrete beams. Research report 84-3. Department of Structural Engineering, Cornell University, Ithaca, New York, 311 ppGoogle Scholar
  22. 22.
    Paultre P, Mitchell D (2003) Code provisions for high-strength concrete – an international perspective. Concrete Int Mag Am Concrete Inst 25(5):76–90Google Scholar
  23. 23.
    Pecce M, Fabbrocino G (1999) Plastic rotation capacity of beams in normal and high-performance concrete. ACI Struct J 96(2):290–296Google Scholar
  24. 24.
    Rangan BV (1998) High-performance high-strength concrete, design recommendations. Concrete Int 20(11):63–68Google Scholar
  25. 25.
    Shah SP, Ahmad SH (1994) High performance concretes and applications. Edward Arnold, EnglandGoogle Scholar
  26. 26.
    Shehata IAEM, Shehata LCD (1996) Ductility of high strength concrete beams in flexure. In: 4th international symposium on utilization of high-strength/high-performance concrete, Paris, pp 945–953Google Scholar
  27. 27.
    Shin S-W (1986) Flexural behaviour including ductility of ultra-HSC members. Ph.D. thesis, University of Illinois at Chicago, Chicago, IL, 232 ppGoogle Scholar
  28. 28.
    Shin S-W, Ghosh SK, Moreno J (1989) Flexural ductility of ultra-HSC members. ACI J Proc 86(4):394–400Google Scholar
  29. 29.
    Shin S-W, Kamara M, Ghosh SK (1990) Flexural ductility, strength prediction, and hysteretic behaviour of ultra-HSC members. In: Hester WT (ed) Second international symposium, SP 121-13, HSC, ACIGoogle Scholar
  30. 30.
    Standards Association of New Zealand (1995) Concrete structures NZS 3101 – part 1: designGoogle Scholar
  31. 31.
    Standards Australia (1994) Australian standards for concrete structures AS 3600, SydneyGoogle Scholar
  32. 32.
    Taerwe L (1991) Brittleness versus ductility of high strength concrete. Struct Eng Int 4:41–45Google Scholar
  33. 33.
    Taerwe L (1996) Codes and regulations. In: 4th international symposium on utilization of high-strength/high-performance concrete, Paris, pp 93–99Google Scholar
  34. 34.
    Tognon G, Ursella P, Coppeti G (1980) Design and properties of concretes with strength over 1500 kgf/cm2. ACI J Proc 77(3):171–178Google Scholar

Copyright information

© RILEM 2008

Authors and Affiliations

  1. 1.Departamento de Engenharia Civil e ArquitecturaUniversidade da Beira InteriorCovilhaPortugal
  2. 2.Departamento de Engenharia CivilUniversity of CoimbraCoimbraPortugal

Personalised recommendations