The WST method, a fracture mechanics test method for FRC

Abstract

The applicability of the wedge-splitting test method (WST), for determining fracture properties of fibre-reinforced concrete, is discussed. Experimental results, using the WST method, are compared with results from uniaxial tension tests (UTT) and three-point bending tests (3PBT) for five different FRC compositions. Furthermore, for the WST method, two different specimen sizes have been investigated. Results from this investigation demonstrate the applicability of the WST method and show that the scatter of the test results is lower than for the 3PBT. Through inverse analysis, stress–crack opening (σ–w) relationships have been determined for each mix and test method. For the two WST specimen sizes, there is no apparent difference either in the number of fibres (per cm2) crossing the fracture plane or in the fracture properties. The major factor contributing to the scatter in the test results is believed to be related to the variation in the number of fibres across the fracture plane. Furthermore, the inverse analyses indicate no systematic differences in the determined parameters between two WST specimens or between the WST and the 3PBT.

Résumé

L’article concerne l’applicabilité de la méthode d’essai d’écartement par enfoncement d’un coin (WST) pour déterminer les propriétés de fissures du béton renforcé de fibres. Les résultats expérimentaux utilisant la méthode WST sont comparés aux résultats des essais de traction uniaxiale (UTT) et des essais de flexion trois points (3PBT) pour cinq compositions différentes de béton renforcé de fibres (FRC). Par ailleurs, en ce qui concerne la méthode WST, deux différentes tailles d’éprouvettes ont été étudiées. Les résultats de cette étude confirme l’applicabilité de la méthode WST et montre que la dispersion des résultats de l’essai est inférieure à celle obtenue avec la méthode 3PBT. A partir de l’analyse inverse, la courbe de comportement du matériau contrainte–ouverture de fissure (σ–w) a été déterminée pour chaque composition et méthode d’essai. Pour les deux tailles d’éprouvette WST, aucune différence apparente n’est visible, ni dans le nombre de fibres (par cm2) traversant le plan de rupture, ni dans les propriétés de fissures. On estime que le principal facteur contribuant à la dispersion des résultats d’essai se rapporte à la variation du nombres de fibres à travers le plan de rupture. De plus, les analyses inverses n’indiquent aucunes différences systématiques dans les paramètres définis entre deux éprouvettes WST ou entre la méthode WST et 3PBT.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

References

  1. 1.

    Hillerborg A, Modeer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concrete Res 6:773–782

    Article  Google Scholar 

  2. 2.

    Hillerborg A (1980) Analysis of Fracture by Means of the Fictitious Crack Model, Particularly for Fibre Reinforced Concrete. Int J Cem Comp 2:177–184

    Google Scholar 

  3. 3.

    RILEM TC TDF-162 (2002) Design of steel fibre reinforced concrete using the σ–w method—principles and applications. Materials and Structures 35:262–278

  4. 4.

    Stang H (1992) Evaluation of properties of cementitious fiber composite materials. In: Reinhardt HW, Naaman AE (eds) High Performance Fibre Reinforced Cement Composites, vol 1. E & FN Spon, London, pp 388–406

  5. 5.

    Cornelissen HAW, Hordijk DA, Reinhardt HW (1986) Experimental determination of crack softening characteristics of normal and lightweight concrete. Heron 31:2

    Google Scholar 

  6. 6.

    RILEM TC TDF-162 (2001) Test and design methods for steel fibre reinforced concrete. Recommendations for uni-axial tension test. Materials and Structures 34:3–6

  7. 7.

    RILEM TC TDF-162 (2002) Test and design methods for steel fibre reinforced concrete. Bending test – Final Recommendation. Materials and Structures 35:579–582

  8. 8.

    RILEM TC-50 (1985) FMC Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Materials and Structures 18(106):285

    Google Scholar 

  9. 9.

    Østergaard L (2003) Early-age fracture mechanics and cracking of concrete – experiments and modelling. Ph.D. Thesis, Department of Civil Engineering, Technical University of Denmark

  10. 10.

    Linsbauer HN, Tschegg EK (1986) Fracture energy determination of concrete with cube shaped specimens. Zement und Beton 31:38–40

    Google Scholar 

  11. 11.

    Brühwiler E, Wittmann FH (1990) The wedge splitting test, a new method of performing stable fracture mechanics test Eng. Fracture Mech 35(1/2/3):117–125

    Article  Google Scholar 

  12. 12.

    Trunk B, Schober G, Wittmann FH (1999) Fracture mechanics parameters of autoclaved aerated concrete. Cem Concrete Res 29:855–859

    Article  Google Scholar 

  13. 13.

    Kim J-K, Kim Y-Y (1999) Fatigue crack growth of high-strength concrete in wedge-splitting test. Cem Concrete Res 29:705–712

    Article  Google Scholar 

  14. 14.

    Elser M, Tschegg EK, Finger N, Stanzl-Tschegg SE (1996) Fracture behaviour of polypropylene-fibre reinforced concrete: an experimental investigation. Comp Sci Technol 56:933–945

    Article  Google Scholar 

  15. 15.

    Meda A, Plizzari GA, Slowik V (2001) Fracture of fiber reinforced concrete slabs on grade. In: De Borst et al (eds) Fracture mechanics of concrete structures. pp 1013–1020

  16. 16.

    Nemegeer D, Vanbrabant J, Stang H (2003) Brite euram program on steel fibre concret subtask: durability: corrosion resistance of cracked fibre reinforced concrete. In: Test and design methods for steel fibre reinforced concrete – background and experiences – Proceedings of the RILEM TC 162-TDF Workshop, Ed Schnütgen and Vandevalle, pp 47–66

  17. 17.

    Löfgren I (2004) The wedge splitting test – a test method for assessment of fracture parameters of FRC? In: Li et al (eds) Fracture mechanics of concrete structures, pp 1155–1162

  18. 18.

    Leite JP de B, Slowik V, Mihashi H (2004) Mesolevel models for simulation of fracture behaviour of fibre reinforced concrete. In: di Prisco et al. (eds) Fibre-reinforced concrete, Proceedings of the Sixth International RILEM Symposium, pp 799–808

  19. 19.

    Krenchel H (1975) Fibre spacing and specific fibre surface, fibre reinforced cement and concrete. In: Neville (ed) The Construction Press, UK, pp 69–79

  20. 20.

    Dupont D (2003) Modelling and experimental validation of the constitutive law (σ–ε) and cracking behaviour of fibre reinforced concrete. Ph.D. Thesis, Katholieke Universiteit Leuven

  21. 21.

    Roelfstra PE, Wittmann FH (1986). Numerical method to link strain softening with failure of concrete In Fracture toughness and fracture energy of concrete. Elsevier, pp 163–175

  22. 22.

    Kitsutaka Y (1997) Fracture parameters by polylinear tension-softening analysis. J Eng Mechanics 123(5):444–450

    Article  Google Scholar 

  23. 23.

    Nanakorn P, Horii H (1996) Back analysis of tension-softening relationship of concrete. J Materials Conc Struct Pavements 32(544):265–275

    Google Scholar 

  24. 24.

    Que NS, Tin-Loi F (2002) Numerical evaluation of cohesive fracture parameters from a wedge splitting test. Eng Fracture Mech 69:1269–1286

    Article  Google Scholar 

  25. 25.

    Olesen JF (2001) Fictitious crack propagation in fibre-reinforced concrete beams. J Eng Mech 127(3):272–280

    Article  Google Scholar 

  26. 26.

    TNO Building and Construction Research (2002) DIANA Finite Element Analysis User’s Manual release 8.1. In: de Witte FC, Schreppers G-J (eds) Delft, The Netherlands

  27. 27.

    Barragán BE (2002) Failure and toughness of steel fiber reinforced concrete under tension and shear. Ph.D. Thesis, Universitat Politécnica de Catalunya, Barcelona, Spain

  28. 28.

    Kooiman AG (2000) Modelling steel fibre reinforced concrete for structural design. Ph.D. Thesis, TU Delft

  29. 29.

    Lee MK, Barr BIG (2003) Strength and fracture properties of industrially prepared steel fibre reinforced concrete. Cem & Concrete Composites 25:321–332

    Article  Google Scholar 

  30. 30.

    Barragán BE, Gettu R, Miguel A, Martín MA, Zerbino R (2003) Uniaxial tension test for steel fibre reinforced concrete – a parametric study. Cem Concrete Composites 25:767–777

    Article  Google Scholar 

  31. 31.

    RILEM TC TDF-162 (2000) σ–ε Design method. Materials and Structures, 33, pp 75–81

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. Löfgren.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Löfgren, I., Stang, H. & Olesen, J.F. The WST method, a fracture mechanics test method for FRC. Mater Struct 41, 197–211 (2008). https://doi.org/10.1617/s11527-007-9231-3

Download citation

Keywords

  • Fibre-reinforced concrete
  • Fracture testing
  • Inverse analysis