Skip to main content
Log in

Experimental evaluation of expansive behavior of an old-aged ASR-affected dam concrete: methodology and application

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Availability of computational power calls for the responsible use of mechanical models that faithfully represent material behavior even in complex cases, as is concrete undergoing Alkali–Silica Reaction (ASR) expansion. In this paper, a series of tests aimed towards obtaining meaningful data for mechanical characterization of an existing, old-aged, ASR-affected dam concrete are presented. These tests, consisting mainly in long-term measurement of free and confined expansions of core-drilled specimens extracted from different locations in the dam, are designed to provide data for a material model. A specific methodology is developed and applied, including procedures for test design, mechanical loading and data acquisition in harsh environmental non-laboratory conditions. Conclusions about the possibility of ASR-expansion mitigation through confinement are drawn from experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Commission on Large Dams (1991) Bulletin No 79, Alkali–Aggregate reaction in concrete dams. ICOLD, Paris

    Google Scholar 

  2. Vivian HE (1950) The reaction product of alkalis and opal. In: CSIRO Bulletin no. 256 Studies in cement–aggregate reaction, Melbourne pp 60–81

  3. Stanton TE (1940) Expansion of concrete trough reaction between cement and aggregate. Proce Am Soc Civil Eng 43:875–904

    Google Scholar 

  4. Herrador MF (2002) Modelo de comportamiento aplicable a hormigones de edad avanzada afectados por la reacción álcali – silicatos. Ph. D. Thesis, Dept. of Construction Technology, Universidade da Coruña, Spain

  5. McGowan JK, Vivian HE (1955) The effect of superincumbent load on mortar bar expansion. Aust J App Mech 6:94–99

    Google Scholar 

  6. Fujii M, Kobayashi K, Kojima T, Maehara H (1986) The static and dynamic behavior of reinforced concrete beams with cracking due to alkali–silica reaction. In: Proceedings of the 7th International Conference on Alkali–Aggregate Reaction, Noyes Publications, Park Ridge, New Jersey, pp 126–130

  7. Hobbs DW (1990) Cracking and expansion due to the Alkali–Silica reaction. Struct Eng Rev 2:65–79

    Google Scholar 

  8. Ferraris CF, Garboczi EJ, Davis FK, Clifton JR (1997) The effect of stress relaxation, self-desiccation and water absorption on the alkali–silica reaction in low water-cement ratio mortars. Cem Concr Res 27:1553–1560

    Article  Google Scholar 

  9. Lo KY, Hefny AM (1999) Measurements of residual expansion rates resulting from alkali–aggregate reaction in existing concrete dams. ACI Mater J 96:339–345

    Google Scholar 

  10. Prezzi M, Monteiro PJM, Sposito G (1997) Alkali–silica reaction – Part 1: use of the Double-Layer Theory to explain the behavior of reaction-product gels. ACI Mater J 94:10–17

    Google Scholar 

  11. Sellier A, Bournazel JP, Mébarki A (1995) Modeling the Alkali–Aggregate Reaction with descriptions of the local destructive phenomena involved. Mater Struct 28:373–383

    Article  Google Scholar 

  12. Adeghe L, Hindy A, Ho MS, Saunders RH (1995) GS concrete growth mitigation project instrumentation and finite element analysis. In: 2nd International Conference on Alkali–Aggregate Reaction in Hydroelectric Plants and Dams, Chattanooga, Tennessee, pp 323–343

  13. May IM, Cope RJ, Wen HX (1996) Modelling of the structural behaviour of AAR affected reinforced concrete members. In: Proceedings of the 10th International Conference on Alkali–Aggregate Reaction, Melbourne, pp 434–441

  14. Charlwood RG, Steele RR, Solymar ZV, Curtis DD (1992) A review of alkali–aggregate reactions in hydroelectric plants and dams. In: Proceedings of the International Conference on Alkali–Aggregate Reactions in Hydroelectric Plants and Dams, CEA & CANCOLD, Fredericton, New Brunswick, Canada

  15. Institution of Structural Engineers (1992) Structural effects of alkali–silica reaction. SETO Ltd., London

    Google Scholar 

  16. Le Roux A, Massieu E, Godart B (1992) Evolution under stress of a concrete affected by A. A. R. – Application to the feasibility of strengthening a bridge by prestressing. In: Proceedings of the 9th International Conference on Alkali–Aggregate Reaction, London

  17. Clark LA (1991) Modeling the structural effects of alkali–aggregate reactions in reinforced concrete. ACI Mater J 88:271–277

    Google Scholar 

  18. Blight GE, Alexander MG, Schutte WK, Ralph TK (1983) The effect of alkali–aggregate reaction on the␣strength and deformation of reinforced concrete structures. In: Proceedings of the 6th International␣Conference on Alkali–Aggregate Reaction in Concrete, Copenhagen, Denmark, 1983, pp 401–410

  19. Blight GE, Alexander MG (1986) Assessment of AAR damage to concrete structures. In: Proceedings of the 7th International Conference on Alkali–Aggregate Reaction in Concrete, Noyes Publications, Park Ridge, New Jersey, 1986

  20. Kobayashi K, Inoue S, Yamasaki T, Nakano K (1988) Alkali–aggregate reaction in prestressed concrete beams. Int J Cement Comp Lightweight Concrete 10:233–240

    Article  Google Scholar 

  21. Larive C (1998) Apports combinés de l’experimentation et de la modélisation à la comprehension de l’alcali-réaction et de ses effets mécaniques, Monograph LPC, OA 28, Laboratoires des Ponts et Chaussées, Paris

  22. Dent Glasser LS (1979) Osmotic pressure and the swelling of gels. Cem Concr Res 9:515–517

    Article  Google Scholar 

  23. Struble LS, Diamond S (1981) Swell properties of synthetic alkali–silica gels. J Am Ceram Soc 64:652–655

    Article  Google Scholar 

  24. Léger P, Tinawi R, Mounzer N (1995) Numerical simulation of concrete expansion in concrete dams affected by alkali–aggregate reaction: state-of-the-art. Can J Civ Eng 22:692–713

    Article  Google Scholar 

  25. Bažant ZP, Steffens A (2000) Mathematical model for kinetics of alkali–silica reaction in concrete. Cem Concr Res 30:419–428

    Article  Google Scholar 

  26. Côté P (1995) Modélisation numérique d’un pilier d’évacuateur de crues atteint de la réaction alcalis-granulats, Mémoire de Maîtrise, Dept. of Civil Engineering, Université de Montréal

  27. Léger P, Côté P, Tinawi R (1996) Finite element analysis of concrete swelling due to alkali–aggregate reactions in dams. Comput Struct 60:601–611

    Article  Google Scholar 

  28. Del Hoyo R, Gutiérrez A (1994) Safety assessment in concrete dams. In: Proceedings of the 18th International Conference on Large Dams, Q. 68 – R. 33, Durban, South Africa, 1994, pp 499–509

  29. Del Hoyo R (1998) Dams ageing caused by concrete expansive troubles. In: Berga L (ed) Dam safety. Balkerna, Rotterdam, pp 677–682

    Google Scholar 

  30. Lombardi J, Perruchot A, Massard P, Larive C (1996) Étude comparÉe de gels silico-calciques produits des rÉactions alcalis-granulats dans les bÉtons et de gels synthÉticques types. Cem Concr Res 26:623–631

    Article  Google Scholar 

  31. Alaejos P, Bermúdez MA (2003) Durabilidad y procesos de degradación del hormigón de presas. Estudio bibliográfico, Monograph M−76. Centro de Estudios y Experimentación de Obras Públicas (CEDEX), Madrid

    Google Scholar 

  32. Alonso JL (1994) Estudio sobre la fisuración de la presa de Belesar. Centro de Estudios y Experimentación de Obras Públicas (CEDEX), Madrid

    Google Scholar 

  33. Mather B (1999) How to make concrete that will not suffer deleterious alkali–silica reaction. Cem Concr Res 29:1281–1288

    Article  Google Scholar 

  34. Poole AB (1992) Introduction to alkali–aggregate reaction in concrete. In: Swamy RN (ed) The alkali–silica reaction in concrete. Blackie & Son Ltd, Glasgow, pp 1–29

    Google Scholar 

  35. RILEM TC107-CSP (1998) Recommendation: measurement of time-dependent strains of concrete. Mater Struct 31:507–512

    Google Scholar 

  36. Ulm FJ, Coussy O, Kefei L, Larive C (2000) Thermo-chemo-mechanics of ASR expansion in concrete structures. J Eng Mech-Asce 126:233–242

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed by projects “Validación, seguimiento y asesoramiento de ensayos en el hormigón de la presa de Belesar” (Soluziona Ingeniería, Universidade da Coruña and Fundación de la Ingeniería Civil de Galicia), directed by Dr. F. Martínez-Abella and Dr. Rodrigo del Hoyo Fernández-Gago, and FEDER 1-FD97-0324-C02-01, “Determinación del comportamiento del hormigón en presas de más de veinte años para su aplicación en estudios de mantenimiento y seguridad” (Soluziona Ingeniería, Universidade da Coruña and Universitat Politècnica de Catalunya), directed by Dr. F. Martínez-Abella and Dr. Antonio Aguado. We also wish to acknowledge the personnel from the Dam Monitoring team from Soluziona Ingeniería, led by J. A. Rodríguez Legarreta and Javier Losada; from the Laboratorio de Construcción Juan Ignacio Vázquez Peña (Universidade da Coruña), and from the Centre of Technological Innovations in Construction and Civil Engineering (CITEEC, Universidade da Coruña), who played key roles in the design and operation of load and measurement systems. Lastly, the authors want to thank Pilar Alaejos, Miguel ángel Bermúdez and Jesús Soriano, from the Central Laboratory for Structures and Building Materials at CEDEX (Centro de Estudios y Experimentación en Obras Públicas, Madrid) for their help with petrographical and chemical analyses included in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel F. Herrador.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrador, M., Martínez-Abella, F. & Rabuñal Dopico, J. Experimental evaluation of expansive behavior of an old-aged ASR-affected dam concrete: methodology and application. Mater Struct 41, 173–188 (2008). https://doi.org/10.1617/s11527-007-9228-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-007-9228-y

Keywords

Navigation