Skip to main content
Log in

Acoustic emission monitoring and numerical modeling of FRP delamination in RC beams with non-rectangular cross-section

  • Original Paper
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

A case study concerning both numerical modeling and in-situ monitoring of a retrofitted RC beam with non-rectangular cross-section is presented. Before retrofitting, non-destructive techniques, such as pull-out and impact tests, were used to estimate the mechanical parameters of concrete. At the same time, a long-term monitoring with the Acoustic Emission (AE) technique was carried out in order to investigate on creep effects and microcracking phenomena. Then, after a complete removal of the overload and retrofitting with FRP sheets, an in-situ loading test was performed. At that stage, the AE technique was again profitably used for the analysis of the cracking progression leading to FRP debonding. A numerical model of the structure is then proposed in the framework of the FE discretization with mechanical parameters estimated according to an inverse analysis on the monitored mechanical behavior of the structure before retrofitting. According to this model it is shown that, when the flexural inertia of the retrofitted beam is considerably higher than that of the unrepaired beam, snap-back instabilities can take place. Finally, considering the self-similarity between the acoustic emission phenomenon and seismicity, an analogy between the snap-back instability of the FRP delamination and that occurring during fault growth is proposed.

Résumé

Une étude de cas au sujet de modeler numérique et de surveiller in-situ d’un faisceau monté en rattrapage de RC avec la section transversale non-rectangulaire est présentée. Avant l’adaptation d’un faisceau, des techniques non destructives, telles que des essais à dégagement et à choc, ont été employées pour estimer les paramètres mécaniques du béton. En même temps, une surveillance à long terme avec la technique d’émission acoustique (AE) a été effectuée afin d’étudier sur des effets de fluage et des phénomènes de microfissuration. Puis, après un déplacement complet de la surcharge et l’adaptation ultérieure avec des feuilles de FRP, un essai in-situ de chargement a été réalisé. Á cette étape, la technique d’AE a été encore profitablement employée pour l’analyse de la progression de fissures menant au décollement du FRP. On propose alors un modèle numérique de la structure dans le cadre de la discrétisation FE avec des paramètres mécaniques estimés selon une analyse inverse sur le comportement mécanique surveillé de la structure avant l’adaptation ultérieure. Selon ce modèle, on le démontre que, quand l’inertie flexural␣du faisceau monté en rattrapage est considérablement plus haute que cela de la structure non réparé, les instabilités de snap-back peuvent avoir lieu. En conclusion, vu l’auto similarité entre le phénomène d’émission et la séismicité acoustiques, on propose une analogie entre l’instabilité de snap-back du décollement de FRP et cela qui se produit pendant la croissance de défaut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leung CKY (2004) Delamination failure in concrete beams retrofitted with a bonded plate. J Mater Civil Eng 13:106–113

    Article  Google Scholar 

  2. Leung CKY (2004) Fracture mechanics of debonding failure in FRP-strengthened concrete beams. In: Li VC, Leung CKY, Willam KJ, Billington SL (eds) Proc. of 5th Intern. Conf. on Frac. Mech. of Concr. and Concr. Struct. (FraMCoS-5), Vail, Colorado, USA 1, pp 41–52

  3. Alaee FJ, Karihaloo BL (2003) Fracture model for flexural failure of beams retrofitted with CARDIFRC. ASCE J Eng Mech 129:1028–1038

    Article  Google Scholar 

  4. Taljsten B (1997) Strengthening of beams by plate bonding. ASCE J Mater Civil Eng 9:206–212

    Article  Google Scholar 

  5. Arduini M, Di Tommaso A, Nanni A (1997) Brittle failure in FRP plate and sheet bonded beams. ACI Struct J 94:363–370

    Google Scholar 

  6. Carpinteri A, Lacidogna G, Pugno N (2005) Creep monitoring in concrete structures by the acoustic emission technique. In: Proc. of the 7th Int. Conf. on creep, shrinkage and durability of concrete and concrete structures (Concreep7), Nantes, 12–14 September 2005

  7. Carpinteri A, Lacidogna G, Pugno N (2004) Damage diagnosis and life-time assessment of concrete and masonry structures by an acoustic emission technique. In: Li VC, Leung CKY, Willam KJ, Billington SL (eds) Proc. of 5th Int. Conf. on Frac. Mech. of Concr. and Concr. Struct. (FraMCoS-5), Vail, Colorado, USA 1, pp 31–40

  8. Carpinteri A, Lacidogna G, Pugno N (2004) A fractal approach for damage detection in concrete and masonry structures by the acoustic emission technique. Acoust Tecn 38:31–37

    Google Scholar 

  9. Carpinteri A, Lacidogna G (2006) Damage monitoring of an historical masonry building by the acoustic emission technique. Mater Struct (in press)

  10. Ohtsu M (1996) The history and development of acoustic emission in concrete engineering. Mag Conc Res 48:321–330

    Article  Google Scholar 

  11. Pollock AA (1973) Acoustic emission-2: acoustic emission amplitudes. Non-Destruct Test 6:264–269

    Article  Google Scholar 

  12. Brindley BJ, Holt J, Palmer IG (1973) Acoustic emission-3: the use of ring-down counting. Non-Destruct Test 6:299–306

    Article  Google Scholar 

  13. Holroyd T (2000) The acoustic emission and ultrasonic monitoring handbook. Coxmoor Publishing Company’s, Oxford

    Google Scholar 

  14. Grosse CU, Reinhardt HW, Finck F (2003) Signal-based acoustic emission techniques in civil engineering. ASCE J Mater Civil Eng 15:274–279

    Article  Google Scholar 

  15. Carpinteri A, Lacidogna G (2002) System for the assessment of safety conditions in reinforced concrete and masonry structures. Italian Patent No. To 2002 A000924, registered on 23 October 2002

  16. Shah SP, Li Z (1994) Localization of microcracking in concrete under uniaxial tension. ACI Mater J 91: 372–381

    Google Scholar 

  17. Shcherbakov R, Turcotte DL (2003) Damage and self-similarity in fracture. Theor Appl Fract Mech 39: 245–258

    Article  Google Scholar 

  18. Hollaway LC, Leeming MB (eds) (1999) Strengthening of reinforced concrete structures. Woodhead Publishing, Cambridge, England

    Google Scholar 

  19. Shigeishi M, Ohtsu M (2001) Acoustic emission moment tensor analysis: development for crack identification in concrete materials. Construct Build Mater 15:311–319

    Article  Google Scholar 

  20. Chang SH, Lee CI (2004) Estimation of cracking and damage mechanisms in rock under triaxial compression by moment tensor analysis of acoustic emission. Int J Rock Mech Min Sci 41:1069–1086

    Article  Google Scholar 

  21. Schubert F, Schechinger B (2002) Numerical modelling of acoustic emission sources and wave propagation in concrete. NDT.net, the e-J Nondestruct Test 7 (9)

  22. Carpinteri A, Lacidogna G, Niccolini G (2006) Critical behaviour in concrete structures and damage localization by acoustic emission. Key Eng Mater (in press)

  23. Lockner DA, Byerlee JD, Kuksenko V, Ponomarev A, Sidorin A (1991) Quasi-static fault growth and shear fracture energy in granite. Nature 350:39–42

    Article  Google Scholar 

  24. ACI 440R-96 (1996) State-of-the-art report on fiber reinforced plastic (FRP). Reinforcement for concrete structures. American Concrete Institute (ACI), Committee 440, Michigan, USA

  25. fib Bulletin (2001) Design and use of externally bonded FRP reinforcement (FRP EBR) for reinforced concrete structures. Bulletin no. 14, prepared by sub-group EBR (Externally Bonded Reinforcement) of fib Task Group 9.3 FRP Reinforcement for Concrete Structures

  26. JCI (2003) Technical report on retrofitting technology for concrete structures. Technical Committee on Retrofitting Technology for Concrete Structures, pp 79–97

  27. Ferretti D, Savoia M (2003) Cracking evolution in R/C members strengthened by FRP-plates. Eng Fract Mech 70:1069–1087

    Article  Google Scholar 

  28. Ko H, Sato Y (2004) Analysis of FRP-strengthened concrete members with varied sheet bond stress-slip models. J Adv Conc Technol 2:317–326

    Article  Google Scholar 

  29. Antonaci P, Bocca P (2005) On the non-destructive evaluation of the Young’s modulus of concrete. In: Proc. of the 11th International Conference on Fracture, Turin, Italy

  30. David E, Djelal C, Buyle-Bodin F (1998) Repair and strengthening of reinforced concrete beams using composite materials. In: Proc. of the 2nd international PhD symposium in civil engineering, Budapest

  31. David E, Ragneau E, Buyle-Bodin F (2003) Experimental analysis of flexural behaviour of externally bonded CFRP reinforced concrete structures. Mater Struct 36:238–241

    Google Scholar 

  32. Carpinteri A (1989) Cusp catastrophe interpretation␣of fracture instability. J Mech Phys Solids 37:567–582

    Article  MATH  Google Scholar 

  33. Uomoto T (1987) Application of acoustic emission to the field of concrete engineering. J Acoust Emission 6:137–144

    Google Scholar 

  34. Colombo S, Main IG, Forde MC (2003) Assessing damage of reinforced concrete beam using b-value analysis of acoustic emission signals. ASCE J Mater Civil Eng 15:280–286

    Article  Google Scholar 

Download references

Acknowledgements

Support of the Ministry of University and Research (MIUR) is gratefully acknowledged. The Authors would like to thank the Ph.D. student Gianni Niccolini for the elaboration of the AE sources location and the Architects Massimo Aprile and Luigi Bacco for the technical support provided in the structural monitoring.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Carpinteri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpinteri, A., Lacidogna, G. & Paggi, M. Acoustic emission monitoring and numerical modeling of FRP delamination in RC beams with non-rectangular cross-section. Mater Struct 40, 553–566 (2007). https://doi.org/10.1617/s11527-006-9162-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-006-9162-4

Keywords

Navigation