Skip to main content
Log in

Transport properties of self compacting concrete with limestone filler or fly ash

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The durability of a cementitious material is greatly influenced by the permeability of the material for potentially aggressive substances. As the pore structure of self compacting concrete (SCC) might be different in comparison with traditional concrete (TC), some changes in durability behaviour may occur. At this moment however, it is unclear how significant these differences will be with regard to the concrete practice. In this paper, the gas and water transport in SCC with limestone filler or fly ash is investigated experimentally. Nine different concrete compositions are considered: one TC and eight SCC mixtures. Some important parameters like the water/cement (W/C) and cement/powder ratio (C/P), type of filler (limestone filler and fly ash), type of aggregate and type of cement are considered. The results of the gas and water transport are discussed and linked to experimental data concerning pore volume. Lower transport properties can be obtained by using fly ash instead of limestone as filler material, by lowering the W/C ratio, decreasing the C/P ratio at a constant W/C ratio or using blast furnace slag cement instead of portland cement. The effect of changing from gravel to crushed limestone is small. SCC is differing strongly of TC with respect to the apparent gas permeability. This difference is probably due to the differences in pore volume, as seen from MIP results.

Résumé

La durabilité d’un matériau cimentaire dépend largement de sa résistance à l’intrusion d’espèces potentiellement agressives. Dû au changement de la composition du béton auto-plaçant (SCC) comparé à celle du béton traditionnel (TC), le système poreux et par conséquent la durabilité pourront être differents face au béton traditionnel. Au moment il n’est pas sûre comment cela va influencer l’emploi du béton à la pratique. Dans cet article les résultats obtenus expérimentalement concernant le transport de gaz et d’eau dans le béton auto-plaçant au filler sont analysés. Neuf gâchées de béton ont été préparées, représentant un béton traditionnel et huit bétons auto-plaçants. Les essais ont été realisés afin d’étudier l’influence de quelques paramètres : le rapport eau/ciment (W/C), le rapport ciment/poudre (C/P), le type de filler (filler calcaire où␣cendres volantes), le type d’agrégats et le type de ciment. Les résultats concernant le transport de gaz et d’eau ont été liés aux résultats expérimentaux de la porosimétrie au mercure. Il est possible de réduire le transport dans le béton en remplaçant le filler calcaire par des cendres volantes, en réduisant le rapport W/C, en augmentant le rapport C/P où en utilisant un ciment laitier de haut-fourneau au lieu du ciment Portand. Peu de différence peut être noté concernant la variation du type d’agregats. Une différence significative néanmoins est déterminée pour la permeabilité apparente de gaz entre le béton auto-plaçant et traditionnel. La différence pourrait être expliquée par la différence en volume des pores des bétons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ozawa K, Ouchi M (1999) Proceedings of the International Workshop on Self-compacting Concrete. JSCE Concrete Engineering Series, 30

  2. Skarendahl A, Petersson O (1999) Self-Compacting Concrete, Proceedings of the First International RILEM Symposium. RILEM Publications S.A.R.L., Proceedings PRO 7

  3. Proceedings of Seminar on Self-Compacting Concrete, European Council for Construction Research, Development and Innovation, Malmö, Copenhagen, 20–21 November 2000

  4. Proceedings of the First North American Conference on the Design and Use of Self-Consolidating Concrete, Evanston (USA), 12–13 November 2002

  5. Proceedings of Advances in concrete through science and engineering, Evanston, 2004

  6. Proceedings of the 3rd international conference on SCC, 17/8/2003–20/8/2003, Reykjavik, RILEM—2003

  7. Billberg P (1999) Self-compacting concrete for civil engineering structures—the Swedish experience. CIB Report 2:99

    Google Scholar 

  8. Uomoto T, Ozawa K (1999) Recommendation for self-compacting concrete. JSCE, Concrete Engineering Series, 31

  9. Association Française de Génie Civil (AFGC) ‘Bétons auto-plaçants—Recommendations provisoires’, Documents scientifiques et techniques, juillet 2000

  10. Zhu W, Bartos PJ (2003) Permeation properties of self-compacting concrete. Cement Concrete Res 33:921–926

    Article  Google Scholar 

  11. Persson B (2003) Internal frost resistance and salt frost scaling of self-compacting concrete. Cement Concrete Res 33:373–379

    Article  MathSciNet  Google Scholar 

  12. Persson B (2003) Sulphate resistance of self-compacting concrete. Cement Concrete Res 33:1933–1938

    Article  MathSciNet  Google Scholar 

  13. Poppe A-M (2004) Influence of fillers on the hydration and properties of self-compacting concrete. Only available in Dutch. Doctoral thesis Ghent University

  14. Audenaert K, De Schutter G Water permeability of SCC. In: ‘Advances in concrete through science and engineering’, Proceedings of International Symposium held during the RILEM Spring Meeting, Evanston, 2004, CD-ROM, paper 39 in session Durability, pp 9

  15. RILEM TC 116-PCD: Permeability of Concrete as a Criterion of its Durability—Recommendations, Materials and Structures. 32 (April 1999) 174–179

  16. Rilem Report 12, Kropp J and Hilsdorf HK (eds) Performance criteria for concrete durability

  17. Carcassès M, Abbas A, Ollivier J-P, Verdier J (2002) An optimised preconditioning procedure for gas permeability measurement. Mater Struct 35:22–27

    Article  Google Scholar 

  18. Khan MI (2003 January/February) Permeation of High Performance Concrete M. ASCE. J Mater Civ Eng 84–92

  19. Ye G (2003) Experimental study and numerical simulation of the development of the microstructure and permeability of cementitious materials. Doctoral thesis Delft University

  20. Boel V, Audenaert K, De Schutter G Gas permeability of SCC. Proceedings of the Second North American Conference on the Design and Use of Self-Consolidating\ Concrete and the fourth International RILEM Symposium on Self-Compacting Concrete, Chicago, Illinois, USA, October 30–November 2, 2005

  21. Assié S (2004) Durabilité des Bétons Autoplaçants. Thèse de doctorat INSA de Toulouse

Download references

Acknowledgments

The financial support of the National Fund for Scientific Research–Flanders is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Boel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boel, V., Audenaert, K., De Schutter, G. et al. Transport properties of self compacting concrete with limestone filler or fly ash. Mater Struct 40, 507–516 (2007). https://doi.org/10.1617/s11527-006-9159-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-006-9159-z

Keywords

Navigation