Skip to main content
Log in

Experimental Tests and Numerical Modelling of Hexagonal Concrete Specimens

  • Original paper
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This paper describes a novel experimental investigation into concrete cracking under complex and rotating loading paths. Hexagonally shaped specimens are loaded in compression until some damage has occurred and then unloaded and rotated before being loaded again until failure. The results from tests on specimens loaded in two directions are compared with control tests undertaken under monotonic loading. The development of the test setup and sample preparation procedure for these novel experiments is described. The results show that the diffuse cracking accumulated during the initial loading direction has the effect of lowering the peak load carrying capacity of the rotated specimen relative to the peak load obtained under monotonic loading. The results of the experiments performed are subsequently used as benchmark tests for numerical simulations, to test the ability of a constitutive model, as implemented in a finite element program, to simulate cracking under complex and rotating load conditions. Numerical simulations of the experiments are performed here using a recently developed plastic-damage-contact constitutive model (Jefferson (2003) Int J Solids Str 40:5973–5999; Jefferson (2003) Int J Solids Str 40:6001–6022; Jefferson (2004) Comput Concrete 1(3):261–284). This model couples the familiar damage and plasticity model frameworks, taking advantage of their relative strengths in modelling tensile and compressive stress states, respectively. In addition, this model employs a contact function to simulate crack closure and aggregate interlock behaviour. The numerical results manage to capture the essential features of the experimental behaviour, in particular, a reduction of the peak load attained as a result of damage initiated in the original loading direction. However, the constitutive model is unable to fully capture the unloading response. A relatively high value for the specific fracture energy G f was employed in the simulations to emulate the relatively ductile response of the experiments. This relatively ductile response of the specimens is conjectured to be due to friction on formed crack planes, and currently local plasticity on these planes is not simulated within the model framework.

Résumé

Cet article décrit une nouvelle étude experimentale sur la fissuration du béton sous l’effet de lignes de charge complexes et rotatives. Des échantillons de taille hexagonale sont soumis à la compression jusqu’ à ce qu’ une degradation du béton a été constatée, puis les échantillons ont été dechargés et soumis à la rotation avant d’ être une fois de plus chargés jusqu’à la rupture. Les resultats des tests sur les échantillons sous charge dans deux directions sont ensuite comparés avec les tests de control entrepris sous chargement monotonique. Le development du dipositif du test et la procedure de preparation des échantillons pour ces nouvelles experiences sont décrits. Les resultats montrent que la fissuration diffuse accumulée durant le chargement dans la direction intiale entraine la dimunition de la charge de pointe de la capacité de support de l’échantillon soumis à la rotation par rapport à la charge de pointe obtenu sous chargement monotonique. Les resultats des experiences realisées sont ensuite utilisés comme tests de performance pour des simulations numeriques, afin de verifier l’aptitude d’un modéle constitutif, implanté dans un programme basé sur les élement finis, à simuler la formation des fissures sous des conditions de charge complexes et rotatives. Les simulations numeriques des experiences menées sont realisées en utilisant un model constitutif de degradation plastique de contact, qui a éte recemment developpé. Ce model combine les cadres familiers des modéles de degradation et de plasticité, en béneficiant de leurs avantages relatifs à la modélisation des états de contrainte de traction et de compression respectivement. Par ailleurs, ce model emploie une fonction de contact pour simuler la fin de la fissuration et l’évolution d’enclenchement des agrégats. Les resultats numeriques parviennent à representer les caractéres essentiels du comportement experimental, particulierement la␣redution de la charge de pointe atteinte comme resultat de la degradation initiée durant␣le chargement dans la direction initiale. Cependant, le modéle constitutif est incapable de representer completement la reaction au dechargement. Une valeur assez élevée de la charge specifique de rupture G f aété utisée dans les simulations afin de reproduire le comportement relativement ductile enregistré durant les experiences menées. Cette reponse relativement influançable des échantillons est supposée être due au frottement des surface de fissuration formées, et la plasticité locale courante de ces surfaces qui n’est pas simulée dans le cadre de ce modéle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nooru-Mohamed MB (1990) Mixed mode fracture of concrete: an experimental approach, PhD thesis, Delft University of technology, The Netherlands

  2. Hassanzadeh M (1992) Behaviour of fracture process zones in concrete influenced by simultaneously applied normal and shear displacements, PhD thesis, Lund Institute of technology, Sweden

  3. Reinhardt HW, Cornelissen HAW, Hordijk DA (1989) Mixed mode fracture tests on concrete. In: Shah SP, Swartz SE (eds) Fracture mechanics of concrete and rock. Springer Verlag, New York

    Google Scholar 

  4. Keuser W, Walraven JC (1989) Fracture of plain concrete under mixed-mode conditions. In: Shah SP, Swartz SE, Barr B (eds) Fracture of concrete and rock—recent developments. Elsevier Applied Science Publishers, London/New York

    Google Scholar 

  5. van Mier JGM (1997) Fracture processes of concrete. CRC Press, Florida (U.S.A) [ISBN 0-8493-9123-7]

  6. Jefferson AD (2003) Craft—a plastic-damage-contact model for concrete. I. Model theory and thermodynamic considerations. Int J Solids Str 40:5973–5999

    Article  MATH  Google Scholar 

  7. Jefferson AD (2003) Craft—a plastic-damage-contact model for concrete. II. Model implementation with implicit return mapping algorithm and consistent tangent matrix. Int J Solids Str 40:6001–6022

    Article  MATH  Google Scholar 

  8. Jefferson AD, Barr BIG, Bennett T, Hee SC (2004). Three dimensional finite element simulations of fracture tests using the Craft concrete model. Comput Concrete 1(3):261–284

    Google Scholar 

  9. Design of normal concrete mixes (revised edition), Building Research Establishment BRE/DOE (1988)

  10. Walraven JC, Reinhardt HW (1981) Theory and experiments on the mechanical behaviour of cracks in plain and reinforced concrete subjected to shear loading, Heron, 26(1A). Delft, The Netherlands

  11. Crisfield MA (1981) A fast incremental/iterative solution procedure that handles ‘snap-through’. Comput Str 13:55–62

    Article  MATH  Google Scholar 

  12. Alfano G, Crisfield MA (2003) Solution strategies for the delamination analysis based on a combination of local control arc-length and line searches. Int J Num Meth Eng 58(7):999–1048

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to the EPSRC for financial support for this research (GR/S05168) and the Finite Element company FEA Ltd. for their help and collaboration in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Bennett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, T., Jefferson, A.D. Experimental Tests and Numerical Modelling of Hexagonal Concrete Specimens. Mater Struct 40, 491–505 (2007). https://doi.org/10.1617/s11527-006-9157-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-006-9157-1

Keywords

Navigation