Skip to main content
Log in

A viscoelastic approach for the assessment of the drying shrinkage behaviour of cementitious materials

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

A new model for the drying shrinkage of concrete is presented. In this model, drying shrinkage strains are regarded as being a spherical elastic and creep response of the material under rising pore pressures during the drying process. Therefore, a basic creep model which allows to incorporate these pore pressures is developed on the basis of microscopic considerations of the role of water in the creep mechanism. Then, the model response is compared to experimental results performed on a cement paste specimen subjected to drying. The developed model is able for describing the main features of the shrinkage behaviour of cement based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wittmann FH (1982) Creep and shrinkage mechanisms. In: Creep and Shrinkage in concrete Structures. Wiley, Chichester, pp 129–161

    Google Scholar 

  2. Iding R, Bresler B (1982) Prediction of shrinkage stresses and deformations in concrete. In: Fundamental research on creep and shrinkage of concrete. Martinus Nijhoff Publishers, The Hague, pp 341–352

    Google Scholar 

  3. Torrenti J-M, Granger L, Diruy M, Genin P (1999) Modelling concrete shrinkage under variable ambient conditions. ACI Mater J 96(1):35–39

    Google Scholar 

  4. Wittmann FH (2001) Damage of normal and high strength concrete as introduced by shrinkage. FraMCoS-4, Cachan, France 28–31 Mai 2001, A.A. Balkema

  5. Wittmann FH, Roelfstra P (1980) Total deformation of loaded drying creep. Cem Concr. Res. 10:601–610

    Article  Google Scholar 

  6. Bažant ZP, Xi Y (1994) Drying creep of concrete: constitutive model and new experiments separating its mechanisms. Mater Struct 27:3–14

    Article  Google Scholar 

  7. Bažant ZP, Hauggaaed AB, Baweja S, Ulm FJ (1997) Microprestress-solidification theory for concrete creep. I: Aging and drying effects. J Eng Mech 123(11):1188–1194

    Google Scholar 

  8. van Zijl G (1999) Computational modelling of masonry creep and shrinkage. PhD thesis, University of Delft, Netherlands

  9. Carlson RW (1937) Drying shrinkage of large concrete members. J of the Am Concrete Inst 33:327–336

    Google Scholar 

  10. Thelandersson S, Martensson A, Dahlblom O (1988) Tension softening and cracking in drying concrete. Mater Struct 21:416–424

    Article  Google Scholar 

  11. Granger L, Torrenti J-M, Acker P (1997) Thoughts about drying shrinkage: experimental results and quantification of structural drying creep. Mater Struct 30:93–105

    Google Scholar 

  12. Obeid W, Mounajed G, Alliche A (2002) Experimental identification of Biot's hydro-mechanical coupling coefficient for cement mortar. Mater Struct 35:229–236

    Google Scholar 

  13. Bourgeois F, Burlion N, Shao JF (2002) Modelling of elastoplastic damage in concrete due to desiccation shrinkage. Int J Numer Anal Methods Geomech 26:759–774

    Article  MATH  Google Scholar 

  14. Gawin D, Pesavento F, Schrefler BA (2004) Modelling of deformations of high strength concrete at elevated temperature. Mater Struct 37:218–236

    Google Scholar 

  15. Grasberger S, Meschke G (2004) Thermo-hygro-mechanical degradation of concrete: From coupled 3D material modelling to durability oriented multifield structural analyses. Mater Struct 37:244–256

    Google Scholar 

  16. Day RL, Cuffaro P, Illston JM (1984) The effect of drying on the drying creep of hardened cement paste. Cement and Concrete Research 14(3):329–338

    Article  Google Scholar 

  17. Parrott LJ, Young JF (1982) Shrinkage and swelling of two hydrated alite pastes. In: Fundamental research on creep and shrinkage of concrete. Martinus Nijhoff Publishers, The Hague, pp 35–48

    Google Scholar 

  18. Sabri S, Illston JM (1982) Isothermal drying shrinkage and wetting swelling of hardened cement paste. In: Fundamental research on creep and shrinkage of concrete. Martinus Nijhoff Publishers, The Hague, pp.63–72

    Google Scholar 

  19. Benboudjema F (2002) Modélisation des déformations différées du béton sous sollicitations biaxiales. Application aux enceintes de confinement de bâtiments réacteurs des centrales nucléaires. PhD Thesis, Université de Marne-La-Vallée. http://farid.benboudjema.free.fr

  20. Benboudjema F, Meftah F, Torrenti J-M (2004) Interaction between drying, shrinkage, creep and cracking phenomena in concrete. Eng Struc 27:239–250

    Article  Google Scholar 

  21. L'Hermite R (1960) Volume changes of concrete. Proceedings of the 4th International Symposium on the Chemistry of Cement, Washington D C, pp 659–694

  22. Bissonnette B, Pierre P, Pigeon M (1999) Influence of key parameters on drying shrinkage of cementitious materials. Cem Concr Res 29(10):1655–1662

    Article  Google Scholar 

  23. Kanstad T (1991) Evaluation of material models for shrinkage and creep of concrete. Nordic concrete research 10:93–104

    Google Scholar 

  24. Ordonez JAF (1979) Eugène Freyssinet. Éditions 2C, bilingual editions

  25. Lohtia RP (1970) Mechanism of creep in concrete. Roorkee Univ Res J 1–2(12):37–47

    Google Scholar 

  26. Bažant ZP, Wu ST (1974) Creep and shrinkage law of concrete at variable humidity. ASCE J Eng Mech Div 6(100):1183–1209

    Google Scholar 

  27. Acker P, Ulm F-J (2001) Creep and Shrinkage of concrete: physical origins and practical measurements. Nucl Eng Design 203:143–158

    Article  Google Scholar 

  28. Ulm F-J, Le Maou F, Boulay C (1999) Creep and shrinkage coupling: new review of some evidence. Revue Française de Génie Civil 3:21–37

    Google Scholar 

  29. Soroka I (1979) Portland cement paste and concrete. Macmillan, London

    Google Scholar 

  30. Lewis RW, Schrefler BA (1998) The finite element method in the static and dynamic deformation and consolidation of porous media. Wiley & Sons, Chiche-ster

    MATH  Google Scholar 

  31. Bažant ZP (1972) Thermodynamics of hindered adsorption and its implications for hardened cement paste and concrete. Cem Concr Res 2:1–16

    Article  Google Scholar 

  32. Wittmann FH private communication

  33. Kachanov LM (1958) Time of the rupture process under creep conditions. Izv Akad Nauk S S R Otd Tekh Nauk 8:26–31

    Google Scholar 

  34. Day RL, Gamble BR (1983) The effect of changes in structure on the activation energy for the creep of concrete. Cem Concr Res 13(4):529–540

    Article  Google Scholar 

  35. Dias WPS, Khoury GA, Sullivan PJE (1987) An activation approach for the temperature dependence of basic creep of hardened cement paste. Mag Concr Res 39(140):141–147

    Article  Google Scholar 

  36. Hansen TC (1986) Physical structure of hardened cement paste, A classical approach. Mater Struct 19(114):423–436

    Article  Google Scholar 

  37. Illston JM (1965) The components of strains in concrete under sustained compressive stress. Mag Concr Res 17(50):21–28

    Google Scholar 

  38. Glücklich J, Amar A (1972) The volumetric creep of mortars subjected to triaxial compression. In: La déformation et la rupture des solides soumis à des sollicitations pluriaxiales. Colloque international de la RILEM, Cannes, France, RILEM, pp 79–95

    Google Scholar 

  39. Ohgishi S, Wada M, Ono H (20–24 August 1979) Triaxial compressive creep of concrete at temperatures 20 degrees C to 320 degrees C. Proceedings of the 3rd International Conference on Mechanical Behaviour of Materials, Cambridge, United Kingdom, pp 109–119

  40. Neimark AV (1991) Percolation theory of capillary hysteresis phenomena and its application for characterization of porous solids. In: Characterisation of porous solids II. Elsevier, Amsterdam, pp 67–75

    Google Scholar 

  41. Baroghel-Bouny V (1994) Caractérisation des pâtes de ciment et des bétons. Méthodes, analyse, interprétation. PhD Thesis, ENPC, Paris

  42. Wittmann FH Einflußdes feuchtigkeitsgehaltes auf das kriechen des zementsteines. Rheologica Acta 9(2):282–287. “only available in German”

  43. Bažant ZP, Hemann JH, Koller H, Najjar LA (1973) Thin-wall cement paste cylinder for creep test at variable humidity or temperature. Mater Struct 6(34):277–281

    Google Scholar 

  44. Scherer GW (1999) Structure and properties of gels. Cem Concr Res 29:1149–1157

    Article  Google Scholar 

  45. Mainguy M, Coussy O, Baroghel-Bouny V (2001) Role of air pressure in drying of weakly permeable materials. ASCE J Eng Mech 127(6):582–592

    Article  Google Scholar 

  46. Alnajim A, Meftah F, Mebarki A (17–20 Mars 2003) A non-saturated porous medium approach for the modelling of concrete behaviour submitted to high temperatures. Euro-C Computational Modelling of Concrete Structures, Pongau, Austria, pp 521–530

  47. Baroghel-Bouny V, Mainguy M, Lassabatere T, Coussy O (1999) Characterisation and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials. Cem Concr Res 29:1225–1238

    Article  Google Scholar 

  48. Bažant ZP, Najjar LJ (1972) Nonlinear water diffusion in non-saturated concrete. Mater Struct 25(25):3–20

    Google Scholar 

  49. Xi Y, Bažant ZP, Molina L, Jennings HM (1994) Moisture diffusion in cementitious materials : moisture capacity and diffusivity. Advanced Cement Based Materials 1:258–266

    Article  Google Scholar 

  50. Witasse R, Georgin J-F, Reyouard J-M (2002) Nuclear cooling tower submitted to shrinkage; behaviour under weight and wind. Nucl Eng Des 217:247–257

    Google Scholar 

  51. Parrott LJ (1974) Lateral strains in hardened cement paste under short and long-term loading. Mag Concr Res 26(89):198–202

    Google Scholar 

  52. Velez K, Maximilien S, Damidot D, Fantozzi G, Sorrentino F (2001) Determination of elastic modulus and hardness of pure constituents of Portland cement clinker. Cement Concrete Research 31:555–561

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benboudjema, F., Meftah, F. & Torrenti, JM. A viscoelastic approach for the assessment of the drying shrinkage behaviour of cementitious materials. Mater Struct 40, 163–174 (2007). https://doi.org/10.1617/s11527-006-9126-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-006-9126-8

Keywords

Navigation