Advertisement

Materials and Structures

, 52:95 | Cite as

A data analysis procedure for phase identification in nanoindentation results of cementitious materials

  • Fabien Bernachy-BarbeEmail author
Original Article
  • 58 Downloads

Abstract

Measuring accurately phase properties is essential for a realistic mesoscale modeling of materials, and nanoindentation is a popular technique regarding mechanical properties. Given the statistical nature of the grid indentation method, where large arrays of indents are performed blindly, the identification of phases from the distributions of measured properties is an essential step. Many biases can be introduced at that stage when the phases do not have very distinct properties as is often the case for cementitious materials, since many indentation tests may also be in effectively heterogeneous areas. It is proposed in the present work to analyze statistical indentation results on cementitious materials with a hierarchical clustering algorithm making use of enriched information, including the spatial coordinates of the indent. It is shown that it allows to reduce potential biases of the method by eliminating tests in potentially heterogeneous areas and performing model independent identification of the different phases.

Keywords

Nanoindentation Micromechanics Cementitious materials Unsupervised clustering 

Notes

Acknowledgements

This work has been carried out in the framework of the CEA-EDF-Framatome agreement. The author thanks S. Poyet (CEA) for discussions regarding the manuscript.

References

  1. 1.
    Mondal P, Shah SP, Marks LD (2009) Nanomechanical properties of interfacial transition zone in concrete. In: Nanotechnology in construction, vol 3, Springer, Berlin, pp 315–320.  https://doi.org/10.1007/978-3-642-00980-8_42 CrossRefGoogle Scholar
  2. 2.
    Zhu W, Bartos PJM (2000) Application of depth-sensing microindentation testing to study of interfacial transition zone in reinforced concrete. Cem Concr Res 30:1299–1304.  https://doi.org/10.1016/S0008-8846(00)00322-7 CrossRefGoogle Scholar
  3. 3.
    Constantinides G, Ulm F-J (2004) The effect of two types of C–S–H on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling. Cem Concr Res 34:67–80.  https://doi.org/10.1016/S0008-8846(03)00230-8 CrossRefGoogle Scholar
  4. 4.
    Han J, Pan G, Sun W, Wang C, Cui D (2012) Application of nanoindentation to investigate chemomechanical properties change of cement paste in the carbonation reaction. Sci China Technol Sci 55:616–622.  https://doi.org/10.1007/s11431-011-4571-1 CrossRefGoogle Scholar
  5. 5.
    Frech-Baronet J, Sorelli L, Charron J-P (2017) New evidences on the effect of the internal relative humidity on the creep and relaxation behaviour of a cement paste by micro-indentation techniques. Cem Concr Res 91:39–51.  https://doi.org/10.1016/j.cemconres.2016.10.005 CrossRefGoogle Scholar
  6. 6.
    Pichler Ch, Lackner R (2009) Identification of logarithmic-type creep of calcium-silicate-hydrates by means of nanoindentation. Strain 45:17–25.  https://doi.org/10.1111/j.1475-1305.2008.00429.x CrossRefGoogle Scholar
  7. 7.
    Vandamme M, Ulm F-J (2013) Nanoindentation investigation of creep properties of calcium silicate hydrates. Cem Concr Res 52:38–52.  https://doi.org/10.1016/j.cemconres.2013.05.006 CrossRefGoogle Scholar
  8. 8.
    Zhang Q, Le Roy R, Vandamme M, Zuber B (2014) Long-term creep properties of cementitious materials: comparing microindentation testing with macroscopic uniaxial compressive testing. Cem Concr Res 58:89–98.  https://doi.org/10.1016/j.cemconres.2014.01.004 CrossRefGoogle Scholar
  9. 9.
    Constantinides G, Ulm F-J, Vliet KV (2003) On the use of nanoindentation for cementitious materials. Mater Struct 36:191–196.  https://doi.org/10.1007/BF02479557 CrossRefGoogle Scholar
  10. 10.
    Hughes JJ, Trtik P (2004) Micro-mechanical properties of cement paste measured by depth-sensing nanoindentation: a preliminary correlation of physical properties with phase type. Mater Charact 53:223–231.  https://doi.org/10.1016/j.matchar.2004.08.014 CrossRefGoogle Scholar
  11. 11.
    Mondal P, Shah SP, Marks L (2007) A reliable technique to determine the local mechanical properties at the nanoscale for cementitious materials. Cem Concr Res 37:1440–1444.  https://doi.org/10.1016/j.cemconres.2007.07.001 CrossRefGoogle Scholar
  12. 12.
    Velez K, Maximilien S, Damidot D, Fantozzi G, Sorrentino F (2001) Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker. Cem Concr Res 31:555–561.  https://doi.org/10.1016/S0008-8846(00)00505-6 CrossRefGoogle Scholar
  13. 13.
    Wei Y, Liang S, Gao X (2017) Phase quantification in cementitious materials by dynamic modulus mapping. Mater Charact 127:348–356.  https://doi.org/10.1016/j.matchar.2017.02.029 CrossRefGoogle Scholar
  14. 14.
    Bernard O, Ulm F-J, Lemarchand E (2003) A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials. Cem Concr Res 33:1293–1309.  https://doi.org/10.1016/S0008-8846(03)00039-5 CrossRefGoogle Scholar
  15. 15.
    Constantinides G, Ravichandran KS, Ulm FJ, Vanvliet KJ (2006) Grid indentation analysis of composite microstructure and mechanics: principles and validation. Mater Sci Eng, A 430:189–202.  https://doi.org/10.1016/j.msea.2006.05.125 CrossRefGoogle Scholar
  16. 16.
    Ulm F-J, Vandamme M, Bobko C, Alberto Ortega J, Tai K, Ortiz C (2007) Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale. J Am Ceram Soc 90:2677–2692.  https://doi.org/10.1111/j.1551-2916.2007.02012.x CrossRefGoogle Scholar
  17. 17.
    Chen JJ, Sorelli L, Vandamme M, Ulm F-J, Chanvillard G (2010) A coupled nanoindentation/SEM-EDS study on low water/cement ratio portland cement paste: evidence for C–S–H/Ca(OH)2 nanocomposites. J Am Ceram Soc 93:1484–1493.  https://doi.org/10.1111/j.1551-2916.2009.03599.x CrossRefGoogle Scholar
  18. 18.
    Krakowiak KJ, Wilson W, James S, Musso S, Ulm F-J (2015) Inference of the phase-to-mechanical property link via coupled X-ray spectrometry and indentation analysis: application to cement-based materials. Cem Concr Res 67:271–285.  https://doi.org/10.1016/j.cemconres.2014.09.001 CrossRefGoogle Scholar
  19. 19.
    Wilson W, Sorelli L, Tagnit-Hamou A (2018) Automated coupling of nanoindentation and quantitative energy-dispersive spectroscopy (NI-QEDS): a comprehensive method to disclose the micro-chemo-mechanical properties of cement pastes. Cem Concr Res 103:49–65.  https://doi.org/10.1016/j.cemconres.2017.08.016 CrossRefGoogle Scholar
  20. 20.
    Trtik P, Münch B, Lura P (2009) A critical examination of statistical nanoindentation on model materials and hardened cement pastes based on virtual experiments. Cem Concr Compos 31:705–714.  https://doi.org/10.1016/j.cemconcomp.2009.07.001 CrossRefGoogle Scholar
  21. 21.
    Ulm F-J, Vandamme M, Jennings HM, Vanzo J, Bentivegna M, Krakowiak KJ, Constantinides G, Bobko CP, Van Vliet KJ (2010) Does microstructure matter for statistical nanoindentation techniques? Cem Concr Compos 32:92–99.  https://doi.org/10.1016/j.cemconcomp.2009.08.007 CrossRefGoogle Scholar
  22. 22.
    Lura P, Trtik P, Münch B (2011) Validity of recent approaches for statistical nanoindentation of cement pastes. Cem Concr Compos 33:457–465.  https://doi.org/10.1016/j.cemconcomp.2011.01.006 CrossRefGoogle Scholar
  23. 23.
    Trtik P, Dual J, Muench B, Holzer L (2008) Limitation in obtainable surface roughness of hardened cement paste: ‘virtual’ topographic experiment based on focussed ion beam nanotomography datasets. J Microsc 232:200–206.  https://doi.org/10.1111/j.1365-2818.2008.02090.x MathSciNetCrossRefGoogle Scholar
  24. 24.
    Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583.  https://doi.org/10.1557/JMR.1992.1564 CrossRefGoogle Scholar
  25. 25.
    Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57.  https://doi.org/10.1016/0020-7225(65)90019-4 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Bushby AJ (2001) Nano-indentation using spherical indenters. Nondestruct Test Eval 17:213–234.  https://doi.org/10.1080/10589750108953112 CrossRefGoogle Scholar
  27. 27.
    Dempster AP, Laird NM, Rubin DB (1976) Maximum likelihood from incomplete data via the EM algorithm. https://dash.harvard.edu/handle/1/3426318. Accessed 1 Feb 2018
  28. 28.
    Randall NX, Vandamme M, Ulm F-J (2009) Nanoindentation analysis as a two-dimensional tool for mapping the mechanical properties of complex surfaces. J Mater Res 24:679–690.  https://doi.org/10.1557/jmr.2009.0149 CrossRefGoogle Scholar
  29. 29.
    Hu C, Han Y, Gao Y, Zhang Y, Li Z (2014) Property investigation of calcium–silicate–hydrate (C–S–H) gel in cementitious composites. Mater Charact 95:129–139.  https://doi.org/10.1016/j.matchar.2014.06.012 CrossRefGoogle Scholar
  30. 30.
    Hu C, Li Z (2015) A review on the mechanical properties of cement-based materials measured by nanoindentation. Constr Build Mater 90:80–90.  https://doi.org/10.1016/j.conbuildmat.2015.05.008 CrossRefGoogle Scholar
  31. 31.
    Moevus M, Godin N, R’Mili M, Rouby D, Reynaud P, Fantozzi G, Farizy G (2008) Analysis of damage mechanisms and associated acoustic emission in two SiC$_f/$[Si–B–C] composites exhibiting different tensile behaviours. Part II: unsupervised acoustic emission data clustering. Compos Sci Technol 68:1258–1265CrossRefGoogle Scholar
  32. 32.
    Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290:2319–2323.  https://doi.org/10.1126/science.290.5500.2319 CrossRefGoogle Scholar
  33. 33.
    Lee JA, Verleysen M (2007) Nonlinear dimensionality reduction. Springer, New York. http://www.springer.com/us/book/9780387393506. Accessed 11 Oct 2018
  34. 34.
    Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31:264–323.  https://doi.org/10.1145/331499.331504 CrossRefGoogle Scholar
  35. 35.
    Ward J Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244MathSciNetCrossRefGoogle Scholar
  36. 36.
    Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 2:224–227.  https://doi.org/10.1109/tpami.1979.4766909 CrossRefGoogle Scholar
  37. 37.
    Aili A (2017) Shrinkage and creep of cement-based materials under multiaxial load: poromechanical modeling for application in nuclear industry. PhD Thesis, Université Paris-Est. https://pastel.archives-ouvertes.fr/tel-01682129/document. Accessed 13 Feb 2018
  38. 38.
    Marshall DB (1984) Geometrical effects in elastic/plastic indentation. J Am Ceram Soc 67:57–60.  https://doi.org/10.1111/j.1151-2916.1984.tb19148.x CrossRefGoogle Scholar
  39. 39.
    Suganuma M (1999) Spherical and Vickers indentation damage in Yttria-stabilized tetragonal zirconia polycrystals. J Am Ceram Soc 82:3113–3120.  https://doi.org/10.1111/j.1151-2916.1999.tb02210.x CrossRefGoogle Scholar
  40. 40.
    Durst K, Göken M, Pharr GM (2008) Indentation size effect in spherical and pyramidal indentations. J Phys Appl Phys 41:074005.  https://doi.org/10.1088/0022-3727/41/7/074005 CrossRefGoogle Scholar
  41. 41.
    Trtik P, Diaz A, Guizar-Sicairos M, Menzel A, Bunk O (2013) Density mapping of hardened cement paste using ptychographic X-ray computed tomography. Cem Concr Compos 36:71–77.  https://doi.org/10.1016/j.cemconcomp.2012.06.001 CrossRefGoogle Scholar
  42. 42.
    Cuesta A, De la Torre ÁG, Santacruz I, Diaz A, Trtik P, Holler M, Lothenbach B, Aranda MAG (2019) Quantitative disentanglement of nanocrystalline phases in cement pastes by synchrotron ptychographic X-ray tomography. IUCrJ 6:473–491.  https://doi.org/10.1107/s2052252519003774 CrossRefGoogle Scholar
  43. 43.
    Ukrainczyk N, Koenders EAB, van Breugel K (2013) Representative volumes for numerical modeling of mass transport in hydrating cement paste. In: Multi-scale modeling and characterization of infrastructure mater, Springer, Dordrecht, pp 173–184.  https://doi.org/10.1007/978-94-007-6878-9_13 CrossRefGoogle Scholar
  44. 44.
    Yio MHN, Wong HS, Buenfeld NR (2017) Representative elementary volume (REV) of cementitious materials from three-dimensional pore structure analysis. Cem Concr Res 102:187–202.  https://doi.org/10.1016/j.cemconres.2017.09.012 CrossRefGoogle Scholar
  45. 45.
    Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830MathSciNetzbMATHGoogle Scholar
  46. 46.
    Trtik P, Kaufmann J, Volz U (2012) On the use of peak-force tapping atomic force microscopy for quantification of the local elastic modulus in hardened cement paste. Cem Concr Res 42:215–221.  https://doi.org/10.1016/j.cemconres.2011.08.009 CrossRefGoogle Scholar
  47. 47.
    Laugesen JL (2005) Density functional calculations of elastic properties of portlandite, Ca(OH)2. Cem Concr Res 35:199–202.  https://doi.org/10.1016/j.cemconres.2004.07.036 CrossRefGoogle Scholar

Copyright information

© RILEM 2019

Authors and Affiliations

  1. 1.Den-Service d’Etude du Comportement des Radionucléides (SECR), CEAUniversité Paris-SaclayGif-sur-YvetteFrance

Personalised recommendations