Advertisement

Materials and Structures

, 52:75 | Cite as

Recommendations of RILEM TC 260-RSC for using superabsorbent polymers (SAP) for improving freeze–thaw resistance of cement-based materials

  • Viktor MechtcherineEmail author
  • Christof Schröfl
  • Michaela Reichardt
  • Agnieszka J. Klemm
  • Kamal H. Khayat
RILEM Technical Committee
  • 101 Downloads

Abstract

This recommendation is focused on application of superabsorbent polymers (SAP) for the improvement of the resistance of cement-based materials to freeze–thaw attack with or without deicing salts. A simple approach to the determination of the amount and properties of SAP as well as methods to verify SAP effectiveness for frost resistance protection are presented.

Keywords

Deicing salt Freeze–thaw Frost resistance Superabsorbent polymers 

Notes

Acknowledgements

The contributions of all TC members in discussion during the drafting of this recommendation are gratefully acknowledged. The authors extend their thanks to the industrial partners for the proofreading and valuable comments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    EN 12390-9:2006 Testing hardened concrete—part 9: freeze–thaw resistance—scalingGoogle Scholar
  2. 2.
    ASTM C666/C 666M—03 (2008) Resistance of concrete to rapid freezing and thawingGoogle Scholar
  3. 3.
    JIS Japan Industrial Standard A1148:2010—Method of test for resistance of concrete to freezing and thawingGoogle Scholar
  4. 4.
    National Standard of the People’s Republic of China GB/T 50082-2009—Standard for test methods of long-term performance and durability of ordinary concrete, part 4: test methods for resistance of concrete to freezing and thawingGoogle Scholar
  5. 5.
    GOST 10060-2012—Concretes: methods for the determination of frost-resistanceGoogle Scholar
  6. 6.
    RILEM recommendation CDF test (1996) Test method for the freeze–thaw resistance of concrete test with sodium chloride solutionGoogle Scholar
  7. 7.
    SIS-CEN/TS 12390-9:2016—Testing hardened concrete—part 9: freezethaw resistance with deicing saltsGoogle Scholar
  8. 8.
    ASTM C672/C 672M—03—Scaling resistance of concrete surfaces exposed to deicing chemicalsGoogle Scholar
  9. 9.
    Mechtcherine V, Reinhardt HW (eds) (2012) Application of superabsorbent polymers (SAP) in concrete construction. RILEM state-of-the-art report prepared by technical committee 225-SAP.  https://doi.org/10.1007/978-94-007-2733-5 Google Scholar
  10. 10.
    Mechtcherine V, Secrieru E, Schröfl C (2015) Effect of superabsorbent polymers (SAPs) on rheological properties of fresh cement-based mortars—development of yield stress and plastic viscosity over time. Cem Concr Res 67:52–65.  https://doi.org/10.1016/j.cemconres.2014.07.003 CrossRefGoogle Scholar
  11. 11.
    Serpukhov I, Mechtcherine V (2015) Early-age shrinkage of ordinary concrete and a strain-hardening cement-based composite (SHCC) in the conditions of hot weather curing. In: Hellmich C, Pichler B, Kollegger J (eds) Mechanics and physics of creep, shrinkage and durability of concrete and concrete structures (proceedings of CONCREEP 10), ASCE, Reston (VA/USA), pp 1504–1513Google Scholar
  12. 12.
    Boshoff et al (2019) The effect of superabsorbent polymers on the mitigation of plastic shrinkage cracking of conventional concrete—results of a RILEM inter-laboratory test (in preparation)Google Scholar
  13. 13.
    Mechtcherine V, Gorges M, Schröfl C, Assmann A, Brameshuber W, Bettencourt Ribeiro V, Cusson D, Custódio J, Fonseca da Silva E, Ichimiya K, Igarashi S, Klemm A, Kovler K, Lopes A, Lura P, Nguyen VT, Reinhardt HWTF, Weiss J, Wyrzykowski M, Ye G, Zhutovsky S (2014) Effect of internal curing by using superabsorbent polymers (SAP) on autogenous shrinkage and other properties of a high-performance fine-grained concrete: results of a RILEM round-robin Test, TC 225-SAP. Mater Struct 47(3):541–562CrossRefGoogle Scholar
  14. 14.
    Wyrzykowski M, Igarashi S-I, Lura P, Mechtcherine V (2018) Recommendation of RILEM TC 260-RSC: using SAP to mitigate autogenous shrinkage of cement-based materials. Mater Struct 51:135.  https://doi.org/10.1617/s11527-018-1241-9 CrossRefGoogle Scholar
  15. 15.
    Snoeck D, De Belie N (2015) Repeated autogenous healing in strain-hardening cementitious composites by using superabsorbent polymers. J Mater Civil Eng 04015086:1–11.  https://doi.org/10.1061/(ASCE)MT.1943-5533.0001360 CrossRefGoogle Scholar
  16. 16.
    Mechtcherine V, Schröfl C, Wyrzykowski M, Gorges M, Lura P, Cusson D, Margeson J, De Belie N, Snoeck D, Ichimiya K, Igarashi S-I, Falikman V, Friedrich S, Bokern J, Kara P, Marciniak A, Reinhardt H-W, Sippel S, Bettencourt Ribeiro A, CustódioJ Ye G, Dong H, Weiss J (2017) Effect of superabsorbent polymers (SAP) on the freeze–thaw resistance of concrete: results of a RILEM interlaboratory study. Mater Struct 50(1):14.  https://doi.org/10.1617/s11527-016-0868-7 CrossRefGoogle Scholar
  17. 17.
    Mönnig S, Lura P (2007) Superabsorbent polymers—an additive to increase freeze–thaw resistance of high strength concrete. In: Grosse CU (ed) Advances in construction materials, vol 2. Springer, Heidelberg, pp 351–358Google Scholar
  18. 18.
    Hasholt MT, Jensen OM, Laustsen S (2015) Superabsorbent polymers as a means of improving frost resistance of concrete. Adv Civ Eng Mater 4:237–256Google Scholar
  19. 19.
    Laustsen S, Hasholt MT, Jensen OM (2015) Void structure of concrete with superabsorbent polymers and its relation to frost resistance of concrete. Mater Struct 48(1–2):357–368CrossRefGoogle Scholar
  20. 20.
    Du L, Folliard KJ (2005) Mechanisms of air entrainment in concrete. Cem Concr Res 35(8):1463–1471CrossRefGoogle Scholar
  21. 21.
    Eickschen D (2008) Operating mechanisms of air-entraining admixtures. Cem Int 6(6):80–94Google Scholar
  22. 22.
    EN 480-11:2005 (2005) Admixtures for concrete, mortar and grout—test methods—part 11: determination of air void characteristics in hardened concreteGoogle Scholar
  23. 23.
    ASTM C457-16: Standard test method for microscopical determination of parameters of the air-void system in hardened concreteGoogle Scholar
  24. 24.
    Lindmark S (1998) Mechanisms of salt frost scaling of Portland cement-bound materials: studies and hypothesis. Ph.D. thesis, Division of Building Materials, Lund Institute of Technology, Lund, Sweden, 286 ppGoogle Scholar
  25. 25.
    EN 12350-7:2009 (2009) Testing fresh concrete—part 7: air content—pressure methodsGoogle Scholar
  26. 26.
    Schröfl C, Mechtcherine V, Gorges M (2012) Relation between the molecular structure and the efficiency of superabsorbent polymers (SAP) as concrete admixture to mitigate autogenous shrinkage. Cem Concr Res 42(6):865–873.  https://doi.org/10.1016/j.cemconres.2012.03.011 CrossRefGoogle Scholar
  27. 27.
    Snoeck D, Schröfl Ch, Mechtcherine V (2018) Recommendation of RILEM TC 260-RSC: testing sorption by superabsorbent polymers (SAP) prior to implementation in cement-based materials. Mater Struct 51:116.  https://doi.org/10.1617/s11527-018-1242-8 CrossRefGoogle Scholar
  28. 28.
    Mechtcherine V, Snoeck D, Schröfl C, De Belie N, Klemm AJ, Ichimiya K, Moon J, Wyrzykowski M, Lura P, Toropovs N, Assmann A, Igarashi S, De La Varga I, Almeida FCR, Erk KA, Ribeiro AB, Custódio J, Reinhardt HW, Falikman V (2018) Testing superabsorbent polymer (SAP) sorption properties prior to implementation in concrete: results of a RILEM round-robin test. Mater Struct 51(1):28.  https://doi.org/10.1617/s11527-018-1149-4 CrossRefGoogle Scholar
  29. 29.
    Jensen OM, Hansen PF (2002) Water-entrained cement-based materials II. Experimental observations. Cem Concr Res 32:973–978CrossRefGoogle Scholar
  30. 30.
    Riyazi S, Kevern JT, Mulheron M (2017) Super absorbent polymers (SAPs) as physical air entrainment in cement mortars. Constr Build Mater 147:669–676CrossRefGoogle Scholar
  31. 31.
    Kusayama S, Kuwabara H, Igarashi S (2014) Comparison of salt scaling resistance of concretes with different types of superabsorbent polymers. In: Application of superabsorbent polymers and other new admixtures in concrete construction, proceedings pro095, pp 267–277Google Scholar
  32. 32.
    Setzer MJ (2001) Recommendations of RILEM TC 176-IDC: test methods of frost resistance of concrete. Mater Struct 34:515–525CrossRefGoogle Scholar
  33. 33.
    Setzer MJ, Fagerlund G, Janssen DJ (1996) CDF test—test method for the freeze–thaw resistance of concrete—tests with sodium chloride solution (CDF). Mater Struct 29:523–528CrossRefGoogle Scholar
  34. 34.
    Olawuyi BJ, Boshoff WP (2017) Influence of SAP content and curing age on air void distribution of high performance concrete using 3D volume analysis. Constr Build Mater 135:580–589CrossRefGoogle Scholar

Copyright information

© RILEM 2019

Authors and Affiliations

  1. 1.Technische Universität DresdenDresdenGermany
  2. 2.University of GlasgowGlasgowUK
  3. 3.Missouri University of Science and TechnologyRollaUSA

Personalised recommendations