Advertisement

Materials and Structures

, 51:151 | Cite as

Reactivity tests for supplementary cementitious materials: RILEM TC 267-TRM phase 1

  • Xuerun Li
  • Ruben Snellings
  • Mathieu Antoni
  • Natalia Mariel Alderete
  • Mohsen Ben Haha
  • Shashank Bishnoi
  • Özlem Cizer
  • Martin Cyr
  • Klaartje De Weerdt
  • Yuvaraj Dhandapani
  • Josée Duchesne
  • Johannes Haufe
  • Doug Hooton
  • Maria Juenger
  • Siham Kamali-Bernard
  • Sabina Kramar
  • Milena Marroccoli
  • Aneeta Mary Joseph
  • Anuj Parashar
  • Cedric Patapy
  • John L. Provis
  • Sergio Sabio
  • Manu Santhanam
  • Laurent Steger
  • Tongbo Sui
  • Antonio Telesca
  • Anya Vollpracht
  • Felipe Vargas
  • Brant Walkley
  • Frank Winnefeld
  • Guang Ye
  • Maciej Zajac
  • Shizhe Zhang
  • Karen L. Scrivener
RILEM Technical Committee Report

Abstract

A primary aim of RILEM TC 267-TRM: “Tests for Reactivity of Supplementary Cementitious Materials (SCMs)” is to compare and evaluate the performance of conventional and novel SCM reactivity test methods across a wide range of SCMs. To this purpose, a round robin campaign was organized to investigate 10 different tests for reactivity and 11 SCMs covering the main classes of materials in use, such as granulated blast furnace slag, fly ash, natural pozzolan and calcined clays. The methods were evaluated based on the correlation to the 28 days relative compressive strength of standard mortar bars containing 30% of SCM as cement replacement and the interlaboratory reproducibility of the test results. It was found that only a few test methods showed acceptable correlation to the 28 days relative strength over the whole range of SCMs. The methods that showed the best reproducibility and gave good correlations used the R3 model system of the SCM and Ca(OH)2, supplemented with alkali sulfate/carbonate. The use of this simplified model system isolates the reaction of the SCM and the reactivity can be easily quantified from the heat release or bound water content. Later age (90 days) strength results also correlated well with the results of the IS 1727 (Indian standard) reactivity test, an accelerated strength test using an SCM/Ca(OH)2-based model system. The current standardized tests did not show acceptable correlations across all SCMs, although they performed better when latently hydraulic materials (blast furnace slag) were excluded. However, the Frattini test, Chapelle and modified Chapelle test showed poor interlaboratory reproducibility, demonstrating experimental difficulties. The TC 267-TRM will pursue the development of test protocols based on the R3 model systems. Acceleration and improvement of the reproducibility of the IS 1727 test will be attempted as well.

Keywords

Supplementary cementitious materials Reactivity test Heat release Bound water Compressive strength 

Notes

Acknowledgements

Francois Avet (EPFL, Switzerland), Luigi Brunetti (Empa, Switzerland), Nele De Belie (Ghent University, Belgium), Paweł T. Durdziński (HeidelbergCement Technology, Germany), Alexandre Ouzia (EPFL, Switzerland), Olga Perebatova (Univeristy of Toronto, Canada), Yury Villagrán Zaccardi (Ghent University, Belgium) and Bing Wang (Sinoma, China) are gratefully acknowledged for their contribution to this work.

Fundings

A. Parashar and S. Bishnoi acknowledge financial support by the Swiss Agency for Development and Cooperation (SDC) grant 81026665.A. M. Joseph acknowledges the financial support from the foundations SIM (Strategic Initiative Materials in Flanders) and VLAIO (Flanders Innovation & Entrepreneurship) of Project ASHCEM within the program “MARES”S. Kramar acknowledges the financial support from the Slovenian Research Agency (research core funding No. P2-0273).T. Sui acknowledges the support by National Key R&D Program of China (2016YFE0206100 and 2017YFB0310905) financed by the Ministry of Science and Technology of the People’s Republic of China (MOST).

Compliance with ethical standards

Conflict of interest

All co-authors are members in RILEM TC 267-TRM. None of the co-authors has financial conflict of interest.

Supplementary material

11527_2018_1269_MOESM1_ESM.docx (553 kb)
Supplementary material 1 (DOCX 552 kb)

References

  1. 1.
    Chapelle J (1958) Attaque sulfocalcique des laitiers et pouzzolanes. Rev Matér Constr 512:136–145Google Scholar
  2. 2.
    Raverdy M, Brivot F, Paillère A, Bron R (1980) Appréciation de l’activité pouzzolanique de constituents secondaires. In: Proceedings of 7e congrés international de la chimie des ciments, Paris, pp 6–41Google Scholar
  3. 3.
    Frattini N (1949) Richerche sulla calce di idrolisi nelle paste di cimento. Ann di Chim Appl 39:616–620Google Scholar
  4. 4.
    Snellings R, Scrivener K (2015) Rapid screening tests for supplementary cementitious materials: past and future. Mater Struct. 1–15.  https://doi.org/10.1617/s11527-015-0718-z CrossRefGoogle Scholar
  5. 5.
    Lothenbach B, Scrivener K, Hooton RD (2011) Supplementary cementitious materials. Cem Concr Res 41(12):1244–1256.  https://doi.org/10.1016/j.cemconres.2010.12.001 CrossRefGoogle Scholar
  6. 6.
    Scrivener KL, Lothenbach B, De Belie N, Gruyaert E, Skibsted J, Snellings R, Vollpracht A (2015) TC 238-SCM: hydration and microstructure of concrete with SCMs State of the art on methods to determine degree of reaction of SCMs. Mater Struct 48(4):835–862.  https://doi.org/10.1617/s11527-015-0527-4 CrossRefGoogle Scholar
  7. 7.
    Avet F, Snellings R, Alujas Diaz A, Ben Haha M, Scrivener K (2016) Development of a new rapid, relevant and reliable (R 3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cem Concr Res 85:1–11.  https://doi.org/10.1016/j.cemconres.2016.02.015 CrossRefGoogle Scholar
  8. 8.
    Suraneni P, Weiss J (2017) Examining the pozzolanicity of supplementary cementitious materials using isothermal calorimetry and thermogravimetric analysis. Cem Concr Compos 83:273–278.  https://doi.org/10.1016/j.cemconcomp.2017.07.009 CrossRefGoogle Scholar
  9. 9.
    Durdziński PT, Ben Haha M, Bernal SA, De Belie N, Gruyaert E, Lothenbach B, Menéndez Méndez E, Provis JL, Schöler A, Stabler C, Tan Z, Villagrán Zaccardi Y, Vollpracht A, Winnefeld F, Zając M, Scrivener KL (2017) Outcomes of the RILEM round robin on degree of reaction of slag and fly ash in blended cements. Mater Struct 50(2):135.  https://doi.org/10.1617/s11527-017-1002-1 CrossRefGoogle Scholar
  10. 10.
    Kocaba V, Gallucci E, Scrivener KL (2012) Methods for determination of degree of reaction of slag in blended cement pastes. Cem Concr Res 42(3):511–525.  https://doi.org/10.1016/j.cemconres.2011.11.010 CrossRefGoogle Scholar
  11. 11.
    Helsel MA, Ferraris CF, Bentz D (2015) Comparative study of methods to measure the density of Cementitious powders. J Test Eval 44(6):2147–2154Google Scholar
  12. 12.
    Antoni M, Rossen J, Martirena F, Scrivener K (2012) Cement substitution by a combination of metakaolin and limestone. Cem Concr Res 42(12):1579–1589.  https://doi.org/10.1016/j.cemconres.2012.09.006 CrossRefGoogle Scholar
  13. 13.
    Donatello S, Tyrer M, Cheeseman CR (2010) Comparison of test methods to assess pozzolanic activity. Cem Concr Comp 32(2):121–127.  https://doi.org/10.1016/j.cemconcomp.2009.10.008 CrossRefGoogle Scholar
  14. 14.
    Snellings R, Chwast J, Cizer Ö, De Belie N, Dhandapani Y, Durdzinski P, Elsen J, Haufe J, Hooton D, Patapy C, Santhanam M, Scrivener K, Snoeck D, Steger L, Tongbo S, Vollpracht A, Winnefeld F, Lothenbach B (2018) Report of TC 238-SCM: hydration stoppage methods for phase assemblage studies of blended cements—results of a round robin test. Mater Struct 51(4):111.  https://doi.org/10.1617/s11527-018-1237-5 CrossRefGoogle Scholar
  15. 15.
    Snellings R, et.al. (2018) TC 238-SCM: RILEM TC-238 SCM recommendation on hydration stoppage by solvent exchange for the study of hydrate assemblages. Mater Struct. (under review)Google Scholar
  16. 16.
    Lothenbach B, De Weerdt K (2016) Thermogravimetric analysis. A practical guide to microstructural analysis of cementitious materials. CRC Press, Oxford, pp 177–212Google Scholar
  17. 17.
    Geiker M (2016) Characterisation of development of cement hydration using chemical shrinkage. A practical guide to microstructural analysis of cementitious materials. CRC Press, Oxford, pp 75–105Google Scholar

Copyright information

© RILEM 2018

Authors and Affiliations

  • Xuerun Li
    • 1
    • 24
  • Ruben Snellings
    • 2
  • Mathieu Antoni
    • 3
  • Natalia Mariel Alderete
    • 4
  • Mohsen Ben Haha
    • 5
  • Shashank Bishnoi
    • 6
  • Özlem Cizer
    • 7
  • Martin Cyr
    • 8
  • Klaartje De Weerdt
    • 9
  • Yuvaraj Dhandapani
    • 10
  • Josée Duchesne
    • 11
  • Johannes Haufe
    • 12
  • Doug Hooton
    • 13
  • Maria Juenger
    • 14
  • Siham Kamali-Bernard
    • 15
  • Sabina Kramar
    • 16
  • Milena Marroccoli
    • 17
  • Aneeta Mary Joseph
    • 4
  • Anuj Parashar
    • 6
  • Cedric Patapy
    • 8
  • John L. Provis
    • 18
  • Sergio Sabio
    • 19
  • Manu Santhanam
    • 10
  • Laurent Steger
    • 8
  • Tongbo Sui
    • 20
  • Antonio Telesca
    • 17
  • Anya Vollpracht
    • 12
  • Felipe Vargas
    • 21
  • Brant Walkley
    • 18
  • Frank Winnefeld
    • 22
  • Guang Ye
    • 23
  • Maciej Zajac
    • 5
  • Shizhe Zhang
    • 23
  • Karen L. Scrivener
    • 1
  1. 1.Laboratory of Construction MaterialsSwiss Federal Institute of Technology in Lausanne (EPFL)LausanneSwitzerland
  2. 2.Sustainable Materials ManagementFlemish Institute of Technological Research (VITO)MolBelgium
  3. 3.Holcim Technology LtdHolderbankSwitzerland
  4. 4.Magnel Laboratory for Concrete ResearchGhentBelgium
  5. 5.HeidelbergCement Technology Center GmbHLeimenGermany
  6. 6.Department of Civil EngineeringIndian Institute of Technology DelhiHauz Khas, New DelhiIndia
  7. 7.Department of Civil EngineeringKU LeuvenLouvainBelgium
  8. 8.LMDC-Département Génie CivilInstitut National des Sciences Appliquées (INSA Toulouse)Toulouse Cedex 4France
  9. 9.Department of Structural EngineeringNorwegian University of Science and TechnologyTrondheimNorway
  10. 10.Department of Civil EngineeringIIT MadrasChennaiIndia
  11. 11.Department of Geology and Geological EngineeringUniversité LavalQuebec CityCanada
  12. 12.Institute of Building Materials ResearchRWTH Aachen UniversityAachenGermany
  13. 13.Department of Civil EngineeringTorontoCanada
  14. 14.Department of Civil, Architectural and Environmental EngineeringUniversity of Texas at AustinAustinUSA
  15. 15.Laboratoire de Génie Civil et Génie Mécanique/LGCGMInstitut National des Sciences Appliquées (INSA Rennes)Rennes Cedex 7France
  16. 16.ZAG-Slovenian National Building and Civil Engineering InstituteLjubljanaSlovenia
  17. 17.Scuola di IngegneriaUniversità degli Studi della BasilicataPotenzaItaly
  18. 18.Department of Materials Science and EngineeringThe University of SheffieldSheffieldUK
  19. 19.Lafarge Research CenterSaint-Quentin-FallavierFrance
  20. 20.Sinoma Research InstituteSinoma International Engineering Co., LtdChaoyang District, BeijingPeople’s Republic of China
  21. 21.Department of Construction Engineering and Management, School of EngineeringPontificia Universidad Catolica de ChileSantiagoChile
  22. 22.Laboratory for Concrete and Construction ChemistryEmpa, Swiss Federal Laboratories for Materials Science and TechnologyDübendorfSwitzerland
  23. 23.Microlab/Section Materials and Environment, Faculty of Civil Engineering and GeosciencesDelft University of TechnologyCN DelftThe Netherlands
  24. 24.BASF Construction Solutions GmbHTrostbergGermany

Personalised recommendations