Advertisement

A methodology for quantifying the impact of casting procedure on anisotropy in fiber-reinforced concrete using X-ray CT

  • Tyler OeschEmail author
  • Eric Landis
  • Daniel Kuchma
Original Article
  • 359 Downloads

Abstract

Fiber-reinforced concretes (FRCs) offer significant improvements in tensile strength and durability compared to most other concrete mixes. However, for safe and efficient use of FRC in large structures, anisotropy of fiber orientation needs to be understood and properly controlled. In this project, both cored samples extracted from a FRC slab and FRC samples cast individually in molds were assessed using X-ray computed tomography (CT) and measurements of fiber orientation were extracted from the resulting CT images. These results showed that fibers within the slab were highly anisotropic in orientation while fibers in individually cast samples showed a much more heterogeneous distribution of orientations. This indicates that fiber orientation is highly dependent on the casting process and suggests that FRC can only be safely and efficiently utilized if anisotropic fiber orientation is properly accounted for during design and optimized casting methods are used during construction.

Keywords

Anisotropic fiber orientation Computed tomography Fiber-reinforced concrete UHPC Hessian analysis Order parameter 

Notes

Funding

This research was funded by the US Army Military Engineering Basic Research (6.1) program under the Material Modeling for Force Protection work package. This work package was directly managed by the US Army Engineer Research and Development Center (ERDC) in Vicksburg, MS, USA.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Borosnyoi A, Balazs GL (2005) Models for flexural cracking in concrete: the state of the art. J Struct Concr 6(2):1464–4177Google Scholar
  2. 2.
    Li VC, Mishra DK, Wu HC (1995) Matrix design for pseudo-strain-hardening fibre reinforced cementitious composites. Mater Struct 28(184):586–595.  https://doi.org/10.1007/Bf02473191 CrossRefGoogle Scholar
  3. 3.
    ACI (2014) Building code requirements of for structural concrete. In: ACI 318-14. American Concrete Institute (ACI), Farmington HillGoogle Scholar
  4. 4.
    CNR (2006) Istruzioni per la Progettazione, l’Esecuzione ed il Controllo di Strutture Fibrorinforzato. In: Riserche, C.N.d. (ed) CNR-DT 204, ItalyGoogle Scholar
  5. 5.
    CPH (2008) Instrucción del Hormigón Estructural. In: Fomento, C.P.d.H.M.d. (ed) EHE-08, SpainGoogle Scholar
  6. 6.
    DBV (2001) DBV-Merkblatt Stahlfaserbeton. In: e.V., D.B.u.B.-V. (ed)Google Scholar
  7. 7.
    FIB (2013) fib model code for concrete structures 2010. In: Béton, F.I.d. (ed) Wilhelm Ernst & Sohn, Berlin, Germany, p 434Google Scholar
  8. 8.
    RILEM (2003) Test and design methods for steel fibre reinforced concrete; σ–ε design method: final recommendation; TC 162-TDF. Mater Struct 36:560–567CrossRefGoogle Scholar
  9. 9.
    SIS (2014) Fibre concrete: design of fibre concrete structures. In: Institute, S.S. (ed) SS 812310Google Scholar
  10. 10.
    Barnett SJ, Lataste JF, Parry T, Millard SG, Soutsos MN (2010) Assessment of fibre orientation in ultra high performance fibre reinforced concrete and its effect on flexural strength. Mater Struct 43(7):1009–1023.  https://doi.org/10.1617/s11527-009-9562-3 CrossRefGoogle Scholar
  11. 11.
    Ferrara L, Meda A (2006) Relationships between fibre distribution, workability and the mechanical properties of SFRC applied to precast roof elements. Mater Struct 39(4):411–420.  https://doi.org/10.1617/s11527-005-9017-4 CrossRefGoogle Scholar
  12. 12.
    Pujadas P, Blanco A, Cavalaro SHP, de la Fuente A, Aguado A (2014) Multidirectional double punch test to assess the post-cracking behaviour and fibre orientation of FRC. Constr Build Mater 58:214–224.  https://doi.org/10.1016/j.conbuildmat.2014.02.023 CrossRefGoogle Scholar
  13. 13.
    di Prisco M, Ferrara L, Lamperti MGL (2013) Double edge wedge splitting (DEWS): an indirect tension test to identify post-cracking behaviour of fibre reinforced cementitious composites. Mater Struct 46:1893–1918CrossRefGoogle Scholar
  14. 14.
    Martz HE, Schneberk DJ, Roberson GP, Monteiro PJM (1993) Computerized-tomography analysis of reinforced-concrete. ACI Mater J 90(3):259–264Google Scholar
  15. 15.
    Morgan IL, Ellinger H, Klinksiek R, Thompson JN (1980) Examination of concrete by computerized-tomography. J Am Concr I 77(1):23–27Google Scholar
  16. 16.
    Landis EN, Keane DT (2010) X-ray microtomography. Mater Charact 61(12):1305–1316.  https://doi.org/10.1016/j.matchar.2010.09.012 CrossRefGoogle Scholar
  17. 17.
    Bentz DP, Quenard DA, Kunzel HM, Baruchel J, Peyrin F, Martys NS, Garboczi EJ (2000) Microstructure and transport properties of porous building materials. II: three-dimensional X-ray tomographic studies. Mater Struct 33(227):147–153.  https://doi.org/10.1007/Bf02479408 CrossRefGoogle Scholar
  18. 18.
    Landis EN, Petrell AL, Lu S, Nagy EN (2000) Examination of pore structure using three dimensional image analysis of microtomographic data. Concr Sci Eng 2(8):162–169Google Scholar
  19. 19.
    Stock SR, Naik NK, Wilkinson AP, Kurtis KE (2002) X-ray microtomography (microCT) of the progression of sulfate attack of cement paste. Cem Concr Res 32(10):1673–1675CrossRefGoogle Scholar
  20. 20.
    Landis EN, Nagy EN, Keane DT, Nagy G (1999) A technique to measure three-dimensional work-of-fracture of concrete in compression. J Eng Mech 125(6):599–605CrossRefGoogle Scholar
  21. 21.
    Poinard C, Piotrowska E, Malecot Y, Daudeville L, Landis EN (2012) Compression triaxial behavior of concrete: the role of the mesostructure by analysis of X-ray tomographic images. Eur J Environ Civ Eng 16:S115–S136.  https://doi.org/10.1080/19648189.2012.682458 CrossRefGoogle Scholar
  22. 22.
    Bakshi SR, Batista RG, Agarwal A (2009) Quantification of carbon nanotube distribution and property correlation in nanocomposites. Compos Part A Appl Sci Manuf 40(8):1311–1318.  https://doi.org/10.1016/j.compositesa.2009.06.004 CrossRefGoogle Scholar
  23. 23.
    Mishurova T, Rachmatulin N, Fontana P, Oesch T, Bruno G, Radi E, Sevostianov I (2018) Evaluation of the probability density of inhomogeneous fiber orientations by computed tomography and its application to the calculation of the effective properties of a fiber-reinforced composite. Int J Eng Sci 122(Supplement C):14–29.  https://doi.org/10.1016/j.ijengsci.2017.10.002 CrossRefGoogle Scholar
  24. 24.
    Trainor KJ, Foust BW, Landis EN (2013) Measurement of energy dissipation mechanisms in the fracture of fiber-reinforced ultrahigh-strength cement-based composites. J Eng Mech 139(7):771–779CrossRefGoogle Scholar
  25. 25.
    Roth JM, Rushing TS, Flores OG, Sham DK, Stevens JW (2010) Laboratory investigation of the characterization of Cor-Tuf flexural and splitting tensile properties. In: Army, U. (ed). Technical Report, Engineer Research and Development Center, Vicksburg, MS, USAGoogle Scholar
  26. 26.
    Williams EM, Graham SS, Reed PA, Rushing TS (2009) Laboratory characterization of Cor-Tuf concrete with and without steel fibers. In: Army U.S. (ed) Technical Report, Engineer Research and Development Center, Vicksburg, Mississippi, USAGoogle Scholar
  27. 27.
    Scott D, Long W, Moser R, Green B, O’Daniel J, Williams B (2015) Impact of steel fiber size and shape on the mechanical properties of ultra-high performance concrete. In: Army, U. (ed) Technical Report, Engineer Research and Development Center, Vicksburg, MS, USAGoogle Scholar
  28. 28.
    Bekaert (2012) Dramix® 3D-55/30 BG. In: N.V. Bekaert S.AGoogle Scholar
  29. 29.
    Drugan WJ, Willis JR (1996) A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J Mech Phys Solids 44(4):497–524.  https://doi.org/10.1016/0022-5096(96)00007-5 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Hashin Z (1983) Analysis of composite-materials: a survey. J Appl Mech Trans ASME 50(3):481–505CrossRefzbMATHGoogle Scholar
  31. 31.
    Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11(5):357–372.  https://doi.org/10.1016/0022-5096(63)90036-X CrossRefzbMATHGoogle Scholar
  32. 32.
    Oesch TS (2015) Investigation of fiber and cracking behavior for conventional and ultra-high performance concretes using X-ray computed tomography. University of Illinois, ChampaignGoogle Scholar
  33. 33.
    Oesch TS (2016) In-situ CT investigation of pull-out failure for reinforcing bars embedded in conventional and high-performance concretes. In: 6th conference on industrial computed tomography (ICT), Wels, Austria, February 9–12, 2016, vol 2. www.NDT.net
  34. 34.
    Oesch TS, Landis EN, Kuchma DA (2016) Conventional concrete and UHPC performance-damage relationships identified using computed tomography. J Eng Mech 142(12):04016101.  https://doi.org/10.1061/(asce)em.1943-7889.0001168 CrossRefGoogle Scholar
  35. 35.
    Flannery BP, Deckman HW, Roberge WG, D’Amico KL (1987) Three-dimensional X-ray microtomography. Science 237(4821):1439–1444.  https://doi.org/10.1126/science.237.4821.1439 CrossRefGoogle Scholar
  36. 36.
    Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1(6):612–619.  https://doi.org/10.1364/JOSAA.1.000612 CrossRefGoogle Scholar
  37. 37.
    Thales (2003) FlashScan 35 Flat Panel Imaging System. In: User Manual, vol. 5.0.3. Thales Electron DevicesGoogle Scholar
  38. 38.
    NSI (2008) efX CT. North Star Imaging, Inc., RogersGoogle Scholar
  39. 39.
    Mathworks, T. (2018) MATLAB. In: Natick, MA, USAGoogle Scholar
  40. 40.
    Young IT, Gerbrands JJ, van Vliet LJ (1998) Fundamentals of image processing, 2.2nd edn. Delft University of Technology, DelftGoogle Scholar
  41. 41.
    Zack GW, Rogers WE, Latt SA (1977) Automatic measurement of sister chromatid exchange frequency. J Histochem Cytochem 25(7):741–753.  https://doi.org/10.1177/25.7.70454 CrossRefGoogle Scholar
  42. 42.
    Herrmann H, Pastorelli E, Kallonen A, Suuronen J-P (2016) Methods for fibre orientation analysis of X-ray tomography images of steel fibre reinforced concrete (SFRC). J Mater Sci 51(8):3772–3783.  https://doi.org/10.1007/s10853-015-9695-4 CrossRefGoogle Scholar
  43. 43.
    Trainor KJ (2011) 3-D analysis of energy dissipation mechanisms in steel fiber reinforced reactive powder concrete. University of Maine, OronoGoogle Scholar
  44. 44.
    Krause M, Hausherr JM, Burgeth B, Herrmann C, Krenkel W (2010) Determination of the fibre orientation in composites using the structure tensor and local X-ray transform. J Mater Sci 45(4):888–896.  https://doi.org/10.1007/s10853-009-4016-4 CrossRefGoogle Scholar
  45. 45.
    Flanders LS (2014) LSFfiberOrient. In: MATLAB ProgramGoogle Scholar
  46. 46.
    Weisstein EW (2018) Spherical coordinates. http://mathworld.wolfram.com/SphericalCoordinates.html. Accessed 20 May 2018
  47. 47.
    Eppenga R, Frenkel D (1984) Monte-Carlo study of the isotropic and nematic phases of infinitely thin hard platelets. Mol Phys 52(6):1303–1334.  https://doi.org/10.1080/00268978400101951 CrossRefGoogle Scholar
  48. 48.
    Steuer H (2004) Thermodynamical properties of a model liquid crystal. Technischen Universität Berlin, BerlinGoogle Scholar
  49. 49.
    Stahli P, Custer R, van Mier JGM (2008) On flow properties, fibre distribution, fibre orientation and flexural behaviour of FRC. Mater Struct 41(1):189–196.  https://doi.org/10.1617/s11527-007-9229-x CrossRefGoogle Scholar
  50. 50.
    Cinar AF, Hollis D, Tomlinson RA, Marrow TJ, Mostafavi M (2016) Application of 3D phase congruency in crack identification within materials. Paper presented at the 11th international conference on advances in experimental mechanics, Exeter, UK, 5th–7th SeptemberGoogle Scholar

Copyright information

© RILEM 2018

Authors and Affiliations

  1. 1.Bundesanstalt für Materialforschung und -prüfung (Federal Institute for Materials Research and Testing)BerlinGermany
  2. 2.Department of Civil and Environmental EngineeringUniversity of MaineOronoUSA
  3. 3.Department of Civil and Environmental EngineeringTufts UniversityMedfordUSA

Personalised recommendations