A new test method to determine the gaseous oxygen diffusion coefficient of cement pastes as a function of hydration duration, microstructure, and relative humidity

  • M. BoumaazaEmail author
  • B. Huet
  • G. Pham
  • P. Turcry
  • A. Aït-Mokhtar
  • C. Gehlen
Original Article


A new test method is developed to determine the gaseous oxygen effective diffusion coefficient through hardened cement pastes conditioned at different relative humidity. The method relies on the measurement of gaseous oxygen accumulation in the downstream compartment of a diffusion cell and on the numerical fitting of a classical diffusion equation (Fick’s second law) on experimental results. Oxygen-effective diffusion coefficients in the range of 10−6–10−11 m2/s can be determined using this test method. The present paper gives a detailed description of the experimental setup, the numerical procedure and presents results obtained on different Portland-based cement pastes. Cement pastes containing silica fume and slag are also tested. Samples are cast at two different volumetric water-per-cement ratios (1.6 and 1.9 m3/m3), tested at three different ages (from 1 day to 8 months) and preconditioned at different relative humidity (3–93%). Hence, the influence of cement composition, hydration duration, relative humidity and the water-per-binder ratio on the oxygen-effective diffusion coefficient \(D_{{{\text{e}},{\text{O}}_{2} }}\) is investigated. Four microstructural properties: total porosity, pore-size distribution, hydration degree and the degree of water saturation of the tested samples are assessed as intermediate parameters to model oxygen diffusivity as a function of the mix design. Results show that well hydrated blended cement pastes have lower diffusivity than Portland pastes (over one order of magnitude for RH within [33–76] %), even though their total porosity was higher than Portland pastes. For all cement pastes diffusivity is found to be well correlated to the mean pore diameter of samples, at different degrees of water saturation.


Durability Gas diffusion Transport property Test method Hydration duration 



The authors would like to thank Lafarge centre de recherche for the funding of this research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    International Federation for Structural Concrete (2006) MC-SLD:2006. Model code for service life design. In: Model code, p 116Google Scholar
  2. 2.
    Baroghel-Bouny V, Kinomura K, Thiery M, Moscardelli S (2011) Easy assessment of durability indicators for service life prediction or quality control of concretes with high volumes of supplementary cementitious materials. Cem Concr Compos 33:832–847CrossRefGoogle Scholar
  3. 3.
    Thiery M, Villain G, Dangla P, Platret G (2007) Investigation of the carbonation front shape on cementitious materials: effects of the chemical kinetics. Cem Concr Res 37:1047–1058CrossRefGoogle Scholar
  4. 4.
    Sakata K (1983) A study on moisture diffusion in drying and drying shrinkage of concrete. Cem Concr Res 13:216–224CrossRefGoogle Scholar
  5. 5.
    Huet B, L’hostis V, Santarini G et al (2007) Steel corrosion in concrete: determinist modeling of cathodic reaction as a function of water saturation degree. Corros Sci 49:1918–1932CrossRefGoogle Scholar
  6. 6.
    Leemann A, Moro F (2017) Carbonation of concrete: the role of CO2 concentration, relative humidity and CO2 buffer capacity. Mater Struct 50:2–14CrossRefGoogle Scholar
  7. 7.
    Bartelt-Hunt SL, Smith JA (2002) Measurement of effective air diffusion coefficients for trichloroethene in undisturbed soil cores. J Contam Hydrol 56:193–208CrossRefGoogle Scholar
  8. 8.
    Sercombe J, Vidal R, Gallé C, Adenot F (2007) Experimental study of gas diffusion in cement paste. Cem Concr Res 37:579–588CrossRefGoogle Scholar
  9. 9.
    Villani C, Loser R, West MJ et al (2014) An inter lab comparison of gas transport testing procedures: oxygen permeability and oxygen diffusivity. Cem Concr Compos 53:357–366CrossRefGoogle Scholar
  10. 10.
    Hamami AA, Turcry P, Aït-Mokhtar A (2012) Influence of mix proportions on microstructure and gas permeability of cement pastes and mortars. Cem Concr Res 42:490–498CrossRefGoogle Scholar
  11. 11.
    Papadakis V, Vayenas C, Fardis M (1991) Physical and chemical characteristics affecting the durability of concrete. ACI Mater J 8:186–196Google Scholar
  12. 12.
    Papadakis VG, Vayenas CG, Fardis MN (1991) Experimental Investigation and mathematical-modeling of the concrete carbonation problem. Chem Eng Sci 46:1333–1338CrossRefGoogle Scholar
  13. 13.
    Namoulniara K, Turcry P (2016) Measurement of CO2 effective diffusion coefficient of cementitious materials. Eur J Environ Civ Eng 2016:8189Google Scholar
  14. 14.
    Lawrence CD (1984) Transport of oxygen through concrete. In: British ceramic society meeting on chemistry and chemically-related properties of cement, London, pp 277–293Google Scholar
  15. 15.
    Wong HS, Buenfeld NR, Head MK (2006) Estimating transport properties of mortars using image analysis on backscattered electron images. Cem Concr Res 36:1556–1566CrossRefGoogle Scholar
  16. 16.
    Demis S, Efstathiou MP, Papadakis VG (2014) Computer-aided modeling of concrete service life. Cem Concr Compos 47:9–18CrossRefGoogle Scholar
  17. 17.
    Houst Y, Wittmann FH (1989) Diffusion de gaz et durabilité du béton armé. In: IABSE symposium on durable structures, pp 139–144Google Scholar
  18. 18.
    Mezedur MM, Kaviany M, Moore W (2002) Effect of pore structure, randomness and size on effective mass diffusivity. AIChE J 48:15–24CrossRefGoogle Scholar
  19. 19.
    Papadakis VG (2000) Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress. Cem Concr Res 30:291–299CrossRefGoogle Scholar
  20. 20.
    Bajja Z, Dridi W, Larbi B, Le Bescop P (2015) The validity of the formation factor concept from through-out diffusion tests on Portland cement mortars. Cem Concr Compos 63:76–83CrossRefGoogle Scholar
  21. 21.
    Scrivener KL, Crumbie AK, Laugesen P (2004) The interfacial transition zone (ITZ) between cement paste and aggregate in concrete. Interface Sci 12:411–421CrossRefGoogle Scholar
  22. 22.
    Wong HS, Zobel M, Buenfeld NR, Zimmerman RW (2009) Influence of the interfacial transition zone and microcracking on the diffusivity, permeability and sorptivity of cement-based materials after drying. Mag Concr Res 61:571–589CrossRefGoogle Scholar
  23. 23.
    Termkhajornkit P, Barbarulo R, Chanvillard G (2015) Microstructurally-designed cement pastes: a mimic strategy to determine the relationships between microstructure and properties at any hydration degree. Cem Concr Res 71:66–77CrossRefGoogle Scholar
  24. 24.
    Marchon D, Flatt RJ (2015) Mechanisms of cement hydration. In: Science and technology of concrete admixtures, pp 129–145Google Scholar
  25. 25.
    Oliphant TE (2007) SciPy: open source scientific tools for Python. Comput Sci Eng 9:10–20CrossRefGoogle Scholar
  26. 26.
    Guyer JE, Wheeler D, Warren JA (2009) FiPy: partial differential equations with python. Comput Sci Eng 11:6–15CrossRefGoogle Scholar
  27. 27.
    Abell A, Willis K, Lange D (1999) Mercury intrusion porosimetry and image analysis of cement-based materials. J Colloid Interface Sci 211:39–44CrossRefGoogle Scholar
  28. 28.
    Scrivener KL, Füllmann T, Gallucci E et al (2004) Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods. Cem Concr Res 34:1541–1547CrossRefGoogle Scholar
  29. 29.
    Yio MHN, Phelan JC, Wong HS, Buenfeld NR (2014) Determining the slag fraction, water/binder ratio and degree of hydration in hardened cement pastes. Cem Concr Res 56:171–181CrossRefGoogle Scholar
  30. 30.
    Meulenyzer S, Chanussot J, Chen JJ (2013) Spectral-spatial image processing strategies for classifying multispectral SEM-EDS X-ray maps of cementitious materials. In 14th euroseminar on microscopy applied to building materials, Helsingør, DenmarkGoogle Scholar
  31. 31.
    Kocaba V, Gallucci E, Scrivener KL (2012) Cement and concrete research methods for determination of degree of reaction of slag in blended cement pastes. Cem Concr Res 42:511–525CrossRefGoogle Scholar
  32. 32.
    Muller ACA (2014) Characterization of porosity & C-S-H in cement pastes by 1H NMR. EPFL, LausanneGoogle Scholar
  33. 33.
    Bartlett JW, Frost C (2008) Reliability, repeatability and reproducibility: analysis of measurement errors in continuous variables. Ultrasound Obstet Gynecol 31:466–475CrossRefGoogle Scholar
  34. 34.
    Nuzzo RL (2016) The box plots alternative for visualizing quantitative data. PM&R 8:268–272CrossRefGoogle Scholar
  35. 35.
    Hill J, Wong HS, Harris AW, Buenfeld NR (2007) Mass transport properties of mature wasteform grouts. Adv Cem Res 19:35–46CrossRefGoogle Scholar
  36. 36.
    Powers TC (1958) Structure and physical properties of hardened Portland cement paste. J Am Ceram Soc 41:1–6CrossRefGoogle Scholar
  37. 37.
    Jennings HM, Thomas JJ, Chen JJ, Rothstein D (2002) Cement paste as a porous material. In: Schuth F, Sing K, Weintkamp J (eds) Chapter 6.11 in Handbook of porous solids, vol 5. Wiley-VCH, pp 2971–3028Google Scholar
  38. 38.
    Yu Z, Ye G (2013) The pore structure of cement paste blended with fly ash. Constr Build Mater 45:30–35CrossRefGoogle Scholar
  39. 39.
    Berodier E, Scrivener K (2015) Evolution of pore structure in blended systems. Cem Concr Res 73:25–35CrossRefGoogle Scholar
  40. 40.
    Feng X, Garboczi EJ, Bentz DP et al (2004) Estimation of the degree of hydration of blended cement pastes by a scanning electron microscopy point-counting procedure by CEMENT AND CONCRETE. Cem Concr Res 34:1787–1793CrossRefGoogle Scholar
  41. 41.
    Peng S, Hu Q, Hamamoto S (2012) Diffusivity of rocks: gas diffusion measurements and correlation to porosity and pore size distribution. Water Resour Res 48:1–9CrossRefGoogle Scholar
  42. 42.
    Jacobs FÃ (1998) Permeability to gas of partially saturated concrete. Mag Concr Res 50:115–121CrossRefGoogle Scholar
  43. 43.
    Marrero TR, Mason EA (1972) Gaseous diffusion coefficients. J Phys Chem Ref Data 1:3–118CrossRefGoogle Scholar
  44. 44.
    Parrott LJ (1994) Moisture conditioning and transport properties of concrete test specimens. Mater Struct 27:460–468CrossRefGoogle Scholar
  45. 45.
    Feldman RF, Cheng Yi H (1985) Properties of Portland cement—silica fume pastes. Cem Concr Res 15:765–774CrossRefGoogle Scholar
  46. 46.
    Boher C (2012) Etude expérimentale et modélisation de la diffusion gazeuse à travers des milieux poreux partiellement saturés en eau. Application aux verres Vycor, géopolymères et pâtes de ciment CEMV. Université de Toulouse, ToulouseGoogle Scholar
  47. 47.
    Xi Y, Bazant ZP, Molina L, Jennings HM (1994) Moisture diffusion in cementitious materials. Advn Cem Bas Mat 1:258–266CrossRefGoogle Scholar
  48. 48.
    Rhamdhani M (2002) The characterisation of oxygen in metal/slag reactions. In: Electric furnace conference proceedings, pp 787–796Google Scholar

Copyright information

© RILEM 2018

Authors and Affiliations

  1. 1.LafargeHolcim Research CenterSaint Quentin FallavierFrance
  2. 2.Laboratoire des Sciences de l’Ingénieur pour l’Environnement (LaSIE), UMR 7356, CNRSUniversité de La RochelleLa RochelleFrance
  3. 3.Centre for Building Materials (cbm)Technical University of MunichMunichGermany

Personalised recommendations