Materials and Structures

, 50:251 | Cite as

Electrokinetic treatment to increase bearing capacity and durability of a granite

Original Article
  • 83 Downloads

Abstract

In this study the effectiveness of an electrokinetic consolidation treatment applied on granite was evaluated. The efficacy of this treatment was compared to that obtained by applying a commercial consolidation product (Tegovakon®). The parameters evaluated were: (1) dry matter after treatment of each product; (2) modifications caused in the physical and geomechanical properties of the granite and (3) colour changes. The results show that the electrokinetic treatment reduces the porosity of the rock more than the Tegovakon does. This porosity reduction lowers the entry and storage of external agents in the rock, and also increases its uniaxial compressive strength. The higher increase in uniaxial compressive strength caused by the electrokinetic treatment than that produced by Tegovakon indicates that the electrokinetic treatment allows to consolidate not only the superficial pores but also the deepest pores. So the electrokinetic treatment increases the penetration depth of treatment with respect to conventional procedures. Finally, colour changes after consolidation were lower by the application of the electrokinetic treatment.

Keywords

Granite Consolidation Uniaxial compressive strength Electrokinetic Porosity 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Franklin JA, Dusseault MB (1991) Rock engineering applications. McGraw-Hill, New YorkGoogle Scholar
  2. 2.
    Sousa LMO, Suárez del Río LM, Calleja L, Ruiz de Argandoña VG, Rodríguez Rey A (2005) Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites. Eng Geol 77:153–168CrossRefGoogle Scholar
  3. 3.
    Dagdelenler G, Sezer EA, Gokceoglu C (2011) Some non-linear models to predict the weathering degrees of a granitic rock from physical and mechanical parameters. Expert Syst Appl 38:7476–7485CrossRefGoogle Scholar
  4. 4.
    Goodman RE (1989) Introduction to rock mechanics, 2nd edn. Wiley, New YorkGoogle Scholar
  5. 5.
    Griffiths L, Heap MJ, Xu T, Chen Chon-feng, Baud P (2017) The influence of pore geometry and orientation on the strength and stiffness of porous rock. J Struct Geol 96:149–160CrossRefGoogle Scholar
  6. 6.
    Tugrul A, Zarif IH (1999) Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng Geol 51:303–317CrossRefGoogle Scholar
  7. 7.
    Ceryan S, Zorlu K, Gokceoglu C, Temel A (2008) The use of cation packing index for characterizing the weathering degree of granitic rocks. Eng Geol 98:60–74CrossRefGoogle Scholar
  8. 8.
    Yavuz H, Altindag R, Sarac S, Ugur I, Sengun N (2006) Estimating the index properties of deteriorated carbonated rocks due to freeze-thaw and thermal shock weathering. Int J Rock Mech Min Sci 43:767–775CrossRefGoogle Scholar
  9. 9.
    Mutlutük M, Altindag R, Türk G (2004) A decay function model for the integrity loss of rock when subjected to recurrent cycles of freezing-thawing and heating-cooling. Int J Rock Mech Min Sci 41:237–244CrossRefGoogle Scholar
  10. 10.
    Nicholson DT (2001) Pore properties as indicators of breakdown mechanism in experimentally weathered limestones. Earth Surf Proc Land 26:819–838CrossRefGoogle Scholar
  11. 11.
    Bubeck A, Walker RJ, Healy D, Dobbs M, Holwell DA (2017) Pore geometry as a control on rock strength. Earth Planet Sci Lett 457:38–48CrossRefGoogle Scholar
  12. 12.
    Balliana E, Ricci G, Pesce C, Zendri E (2016) Assessing the value of green conservation for cultural heritage: positive and critical aspects of already available methodologies. Int J Conserv Sci 7:185–202Google Scholar
  13. 13.
    Zendri E, Biscontin G, Nardini I, Riato S (2007) Characterization and reactivity of silicatic consolidants. Constr Build Mater 21:1098–1106CrossRefGoogle Scholar
  14. 14.
    Ferreira Pinto AP, Delgado Rodrigues J (2008) Stone consolidation: the role of treatment procedures. J Cult Herit 9:38–53CrossRefGoogle Scholar
  15. 15.
    El-Gohary MA (2015) Methodological evaluation of some consolidants interference with ancient Egyptian sandstone “Edfu Mammisi as a case study”. Prog Org Coat 80:87–97CrossRefGoogle Scholar
  16. 16.
    Slavíková M, Krejci F, Zemlicka J, Pech M, Kotlík P, Jakubek J (2012) X-ray radiography and tomography for monitoring the penetration depth of consolidants in Opuka—the building stone of Prague monuments. J Cult Herit 13:357–364CrossRefGoogle Scholar
  17. 17.
    Zoghlami K, Gómez-Gras D, Álvarez A, de Luxán MP (2005) Evaluation of consolidating and water repellent treatments applied to the Miocene sandstone used in Tunisian Heritage Monuments. Mater Constr 55:25–39Google Scholar
  18. 18.
    Karatasios I, Theoulakis P, Kalagri A, Sapalidis A, Kilikoglou V (2009) Evaluation of consolidation treatments of marly limestones used in archeological monuments. Constr Build Mater 23:2803–2812CrossRefGoogle Scholar
  19. 19.
    Mosquera MJ, Rivas T, Prieto B, Silva B (2000) Microstructural changes in granitic rocks due to consolidation treatments: their effects on moisture transport. In: 9th International congress on deterioration and conservation of stone, Venice, 19–24 JuneGoogle Scholar
  20. 20.
    Mosquera MJ, de los Santos DM, Rivas T, Sanmartín P, Silva B (2009) New nanomaterials for protecting and consolidating stone. J Nano Res 8:1–12CrossRefGoogle Scholar
  21. 21.
    Varas-Muriel MJ, Pérez-Monserrat EM, Vázquez-Calvo C, Fort R (2015) Effect of conservation treatments on heritage stone. Characterisation of decay processes in a case study. Constr Build Mater 95:611–622. https://doi.org/10.1016/j.conbuildmat.2015.07.087 CrossRefGoogle Scholar
  22. 22.
    Bernabeu A, Expósito E, Montiel V, Ordóñez S, Aldaz A (2001) A new electrochemical method for consolidation of porous rocks. Electrochem Commun 3:122–127. https://doi.org/10.1016/S1388-2481(01)00117-5 CrossRefGoogle Scholar
  23. 23.
    Feijoo J, Ottosen LM, Nóvoa XR, Rivas T, de Rosario I (2017) An improved electrokinetic method to consolidate porous materials. Mater Struct 50:186. https://doi.org/10.1617/s11527-017-1063-1 CrossRefGoogle Scholar
  24. 24.
    IGME (Instituto Geológico y Minero de España) (1980) Mapa geologic de España. Serie Magna; E 1:50000, 2nd edn. Hojas 185 (Pontevedra)Google Scholar
  25. 25.
    RILEM (RéunionInternationale des Laboratoiresd’Essais et de Recherche sur les Matériaux et les Constructions) (1980) Commission 25 PEM. Protection et Erosion des Monuments. Recommandationsprovisoires. Essaisrecommandés pour mesurerl’altération des pierres et évaluerl’efficacité des méthodes de traitement. Test No. II. 1: Open porosity and Test II. 2: Bulk and real densitiesGoogle Scholar
  26. 26.
    ICR-CNR-Instituto Centrale do Restauro-Commisione Normal (1981) Doc. NORMAL 7/81. Assorbimentod’acqua per immersionetotale. Capacitá di imbibizioneGoogle Scholar
  27. 27.
    RILEM-RéunionInternationale des Laboratoiresd’Essaiset de Recherche sur les Matériaux et les Constructions (1980) Commission 25 PEM. Protection et Erosion des Monuments. Recommandationsprovisoires. Essaisrecommandés pour mesurerl’altération de pierres et évaluerl’efficacité des méthodes de traitement. Test no. 11.5, Evaporation curveGoogle Scholar
  28. 28.
    ICR-CNR-Instituto Centrale do restauro-Commisione Normal (1985) Doc. NORMAL 11/85. Assorbimentod’acqua per capilaritá. Coefficiente di assorbimentocapillareGoogle Scholar
  29. 29.
    Norma UNE-EN 1926 (1999) Métodos de ensayo para piedra natural. Determinación de la resistencia a la compresiónGoogle Scholar
  30. 30.
    Esbert RM, Diaz-Pache F (1993) Influence of petrographical characteristics in the penetration of consolidants in porous building stones. Mater Constr 43(230):25–36CrossRefGoogle Scholar
  31. 31.
    Feijoo J, Ottosen LM, Pozo-Antonio JS (2015) Influence of the properties of granite and sandstone in the desalination process by electrokinetic technique. Electrochim Acta 181:280–287. https://doi.org/10.1016/j.electacta.2015.06.006 CrossRefGoogle Scholar
  32. 32.
    Feijoo J, Nóvoa XR, Rivas T, Mosquera MJ, Taboada J, Montojo C, Carrera F (2013) Granite desalination using electromigration. Influence of type of granite and saline contaminant. J Cult Herit 14:365–376. https://doi.org/10.1016/j.culher.2012.09.004 CrossRefGoogle Scholar
  33. 33.
    Díaz B, Freire L, Merino P, Nóvoa XR, Pérez MC (2008) Impedance spectroscopy study of satured mortar samples. Electrochim Acta 53:7549–7555CrossRefGoogle Scholar
  34. 34.
    Cabeza M, Merino P, Miranda A, Nóvoa XR, Sanchez I (2002) Impedance spectroscopy study of hardened Portland cement paste. Cem Concr Res 32:881–891. https://doi.org/10.1016/S0008-8846(02)00720-2 CrossRefGoogle Scholar
  35. 35.
    RILEM-Reunion Internationale des Laboratoiresd’Essaiset de recherche sur les materiauxet les Constructions (RILEM) (1978) Crystallization test by total immersion (Test V. 1.). Crystallization test by partial immersion (Test V.2.). In: Proceedings of the international symposium deterioration and conservation of stone monuments. UNESCO-RILEM, ParisGoogle Scholar
  36. 36.
    Rivas T, Prieto B, Silva B (2008) Artificial weathering test of granitic rocks. Mater Constr 58:179–189Google Scholar
  37. 37.
    De Rosario I, Elhaddad F, Pan A, Benavides R, Rivas T, Mosquera MJ (2015) Effectiveness of a novel consolidant on granite: laboratory and in situ results. Constr Build Mater 76:140–149CrossRefGoogle Scholar
  38. 38.
    Prieto B, Sanmartín P, Silva B, Verdú M, Miguel F (2008) An effective methodology to colour characterization for contact colour measurement in granitic rocks. Opt Pura Apl 41:389–396Google Scholar
  39. 39.
    International Commission on Illumination (2007) CIE S 014-4/E:2007 colorimetry-part 4: CIE 1976 L*a*b* colour space. CIE Central Bureau, ViennaGoogle Scholar
  40. 40.
    Delgado J, Grossi C (2007) Indicators and ratings for the compatibility assessment of conservation actions. J Cult Herit 8:32–43CrossRefGoogle Scholar
  41. 41.
    de Rosario I, Feijoo J, Rivas T, Mosquera MJ, Elhaddad F (2014) Evaluation of the effectiveness of a new nanoconsolidant in granitic rocks. In: Alejano R, Perucho A, Olalla C, Jiménez R (eds) Rock engineering and rock mechanics: structures in and on rock masses. Taylor & Francis Group, London. ISBN 978-1-138-00149-7Google Scholar
  42. 42.
    White AF, Brantley SL (2003) The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? Chem Geol 202(3–4):479–506CrossRefGoogle Scholar
  43. 43.
    McAdam AC, Zolotov MY, Mironenko MV, Sharp TG (2008) Formation of silica by low-temperature acid alteration of Martian rocks: physical–chemical constraints. J Geophys Res 113:E08003CrossRefGoogle Scholar

Copyright information

© RILEM 2017

Authors and Affiliations

  1. 1.Dep. Ingeniería de los Recursos Naturales y Medio AmbienteUniversidad de VigoVigoSpain
  2. 2.Department of Chemical Engineering, ENCOMAT Group, EEIUniversity of VigoVigoSpain

Personalised recommendations