Advertisement

Materials and Structures

, 50:248 | Cite as

Estimating shear properties of walnut wood: a combined experimental and theoretical approach

  • Erik Valentine Bachtiar
  • Markus Rüggeberg
  • Stefan Hering
  • Michael Kaliske
  • Peter Niemz
Original Article

Abstract

In this study, several theoretical models to numerically estimate shear properties of orthotropic materials are introduced. These approaches are based on the combination of Hankinson’s empirically derived formula with other empirical and analytical calculations. Next to shear moduli, which are estimated from the elastic moduli and Poisson’s ratios, shear strengths are also estimated from the in-axis strengths. The models are validated by mechanical tests on walnut wood (Juglans regia L.), for which a sufficient data set can be found in literature. The Arcan test is used to estimate the shear moduli, while the shear block test is used to estimate the shear strengths. The results show that the model, which is based on a combined use of Hankinson’s formula and tensor rotation, gives the best estimation of shear moduli as evaluated by the minimum differences to the experimentally obtained results. For the shear strengths, a combination of Hankinson’s formula and Norris’ failure criterion shows the best agreement in comparison to the experimental data. The theoretical calculations may be used for a time efficient estimation of shear modulus and strength in comparison to the very time-consuming experimental estimation.

Keywords

Approximation methods for orthotropic shear property Hankinson’s formula Shear moduli Shear strengths Walnut wood (Juglans regia L.) 

Notes

Acknowledgements

Special acknowledgement is attributed to Deutsche Forschungsgemeinschaft (DFG, Project No. KA 1163/25) and Swiss National Science Foundation (SNF, Project No. 14762) for the funding of this study. Additionally, we want to thank Thomas Schnider who helped during the specimens preparation.

Funding

This work is a part of combined project between TU Dresden, Germany funded by (DFG, Project No. KA 1163/25) and ETH Zurich, Switzerland funded by Swiss National Science Foundation (SNF, Project No. 14762).

Compliance with ethical standards

Conflict of interest

We declare that there is no conflict of interest in this work.

Supplementary material

11527_2017_1119_MOESM1_ESM.docx (59 kb)
Supplementary material 1 (DOCX 59 kb)

References

  1. 1.
    Landau LD, Lifshitz EM (1970) Theory of elasticity, vol 7. Course of theoretical physics, 2nd edn. Pergamon Press, OxfordGoogle Scholar
  2. 2.
    von Mises R (1913) Mechanik der festen Körper in plastisch-deformable Zustand. Nachr d Kgl Ges Wiss Göttingen, Math-phys Klasse 1(1):582–592zbMATHGoogle Scholar
  3. 3.
    Tresca H (1864) Mémoire sur l’écoulement des corps solides soumis à de fortes pressions. Imprimerie impériale, ParisGoogle Scholar
  4. 4.
    Iosipescu N (1967) New accurate procedure for single shear testing of metals. J Mater 2(3):537–566Google Scholar
  5. 5.
    Arcan M, Hashin Z, Voloshin A (1978) A method to produce uniform plane-stress states with applications to fiber-reinforced materials. Exp Mech 18(4):141–146.  https://doi.org/10.1007/bf02324146 CrossRefGoogle Scholar
  6. 6.
    Xavier J, Oliveira M, Morais J, Pinto T (2009) Measurement of the shear properties of clear wood by the Arcan test. Holzforschung 63(2):217–225CrossRefGoogle Scholar
  7. 7.
    DIN-52187 (1979) Prüfung von Holz: Bestimmung der Scherfestigkeit in Faserrichtung. Beuth Verlag GmbH, BerlinGoogle Scholar
  8. 8.
    Bodig J, Jayne B (1993) Mechanics of wood and wood composites. Krieger Publishing Company, MalabarGoogle Scholar
  9. 9.
    Bucur V, Archer R (1984) Elastic constants for wood by an ultrasonic method. Wood Sci Technol 18(4):255–265CrossRefGoogle Scholar
  10. 10.
    Müller U, Ringhofer A, Brandner R, Schickhofer G (2015) Homogeneous shear stress field of wood in an Arcan shear test configuration measured by means of electronic speckle pattern interferometry: description of the test setup. Wood Sci Technol 49(6):1123–1136.  https://doi.org/10.1007/s00226-015-0755-3 CrossRefGoogle Scholar
  11. 11.
    Saint-Venant B (1863) Mémoire sur la destribution d’lasticit. Journal de Mathématiques Pures et Appliquées (Liouville), ser 2, t 8Google Scholar
  12. 12.
    Lekhnitskii S (1963) Theory of elasticity of an anisotropic elastic body. Holden Day, Inc., San FranciscozbMATHGoogle Scholar
  13. 13.
    Bachtiar EV, Sanabria SJ, Mittig JP, Niemz P (2017) Moisture-dependent elastic characteristics of walnut and cherry wood by means of mechanical and ultrasonic test incorporating three different ultrasound data evaluation techniques. Wood Sci Technol 51(1):47–67.  https://doi.org/10.1007/s00226-016-0851-z CrossRefGoogle Scholar
  14. 14.
    Bachtiar EV, Rüggeberg M, Niemz P (2017) Mechanical behavior of walnut (Juglans regia L.) and cherry (Prunus avium L.) wood in tension and compression in all anatomical directions. Revisiting the tensile/compressive stiffness ratios of wood. In print Holzforschung 2017Google Scholar
  15. 15.
    DIN-52184 (1979) Prüfung von Holz: Bestimmung der Quellung and Schwindung. Beuth Verlag GmbH, BerlinGoogle Scholar
  16. 16.
    DIN-52183 (1977) Prüfung von Holz: Bestimmung des Feuchtigkeitsgehaltes. Beuth Verlag GmbH, BerlinGoogle Scholar
  17. 17.
    Hasanpour R, Choupani N (2009) Rock fracture characterization using the modified Arcan test specimen. Int J Rock Mech Min Sci 46(2):346–354CrossRefGoogle Scholar
  18. 18.
    Deshpande V, Fleck N (2001) Multi-axial yield behaviour of polymer foams. Acta Mater 49(10):1859–1866CrossRefGoogle Scholar
  19. 19.
    Cognard J-Y, Sohier L, Davies P (2011) A modified Arcan test to analyze the behavior of composites and their assemblies under out-of-plane loadings. Compos A Appl Sci Manuf 42(1):111–121CrossRefGoogle Scholar
  20. 20.
    Jurf RA, Pipes RB (1982) Interlaminar fracture of composite materials. J Compos Mater 16(5):386–394CrossRefGoogle Scholar
  21. 21.
    Clauss S, Pescatore C, Niemz P (2014) Anisotropic elastic properties of common ash (Fraxinus excelsior L.). Holzforschung 68(8):941–949CrossRefGoogle Scholar
  22. 22.
    Keunecke D, Hering S, Niemz P (2008) Three-dimensional elastic behaviour of common yew and norway spruce. Wood Sci Technol 42(8):633–647CrossRefGoogle Scholar
  23. 23.
    Hankinson R (1921) Investigation of crushing strength of spruce at varying angles of grain. Tech. Rep. No. 259, U.S. Air ServiceGoogle Scholar
  24. 24.
    Yoshihara H (2009) Prediction of the off-axis stress-strain relation of wood under compression loading. Eur J Wood Wood Prod 67(2):183–188CrossRefGoogle Scholar
  25. 25.
    Radcliffe B (1965) A theoretical evaluation of Hankinson’s formula for modulus of elasticity of wood at an angle to the grain. Quart Bull Michigan Agr Exp Sta 48(1):286–295Google Scholar
  26. 26.
    Keylwerth R (1951) The anisotropic elasticity of wood and plywood (Die anisotrope Elastizität des Holzes und der Lagenhölzer). Verlag des Vereins Deutscher Ingenieure VDI-Forschungsheft 430Google Scholar
  27. 27.
    Garab J, Keunecke D, Hering S, Szalai J, Niemz P (2010) Measurement of standard and off-axis elastic moduli and poisson’s ratios of spruce and yew wood in the transverse plane. Wood Sci Technol 44(3):451–464CrossRefGoogle Scholar
  28. 28.
    Kon T (1948) On the law of variation of the modulus of elasticity for bending in wooden beams. Bull Hokkaido Univ Dept Eng 1(1):157–166Google Scholar
  29. 29.
    Aicher S, Klöck W (2001) Linear versus quadratic failure criteria for in-plane loaded wood based panels. Otto-Graft-J 12(1):187–199Google Scholar
  30. 30.
    Norris C (1962) Strength of orthotropic materials sucbhected to combined stresses. Technical Report No. 1816. U.S. Dept. of Agriculture, Forest Service Forest Products Laboratory, Madison, Wisconsin, USAGoogle Scholar
  31. 31.
    Hill R (1950) The mathematical theory of plasticity. Oxford University Press Inc., New YorkzbMATHGoogle Scholar
  32. 32.
    Tsai SW, Wu EM (1971) A general theory of strength for anisotropic material. J Compos Mater 5(1):58–80CrossRefGoogle Scholar
  33. 33.
    Ku HH (1966) Notes on the use of propagation of error formulas. J Res Natl Bureau Stand 70(4):263–273Google Scholar
  34. 34.
    Stephens MA (1974) EDF statistics for goodness of fit and some comparisons. J Am Stat Assoc 69(347):730–737.  https://doi.org/10.1080/01621459.1974.10480196 CrossRefGoogle Scholar
  35. 35.
    Snedecor G, Cochran W (1989) Statistical methods, 8th edn. Iowa University Press, Iowa CityzbMATHGoogle Scholar
  36. 36.
    Kollmann FFP, Coté WA (1984) Principles of wood science and technology. Springer, BerlinGoogle Scholar
  37. 37.
    Bucur V (2006) Acoustic of wood. Springer Series in Wood Science. Springer, BerlinGoogle Scholar
  38. 38.
    Wagenführ A, Scholz F (2012) Taschenbuch der Holztechnik. Carl Hanser Verlag GmbH & Co. KG, MünchenCrossRefGoogle Scholar
  39. 39.
    Reichel S (2015) Modellierung und Simulation hygro-mechanisch beanspruchter Strukturen aus Holz im Kurz- und Langzeitbereich. Technische Universität Dresden, DresdenGoogle Scholar
  40. 40.
    Ozyhar T, Mohl L, Hering S, Hass P, Zeindler L, Ackermann R, Niemz P (2016) Orthotropic hygric and mechanical material properties of oak wood. Wood Mater Sci Eng 11(1):36–45.  https://doi.org/10.1080/17480272.2014.941930 CrossRefGoogle Scholar
  41. 41.
    Sonderegger W, Martienssen A, Nitsche C, Ozyhar T, Kaliske M, Niemz P (2013) Investigations on the physical and mechanical behaviour of sycamore maple (Acer pseudoplatanus L.). Eur J Wood Wood Prod 71(1):91–99.  https://doi.org/10.1007/s00107-012-0641-8 CrossRefGoogle Scholar
  42. 42.
    Donaldson L (2011) Delamination of wood at the microscopic scale: current knowledge and methods. In: Bucur V (ed) Delamination in wood, wood products and wood-based composites. Springer, Dordrecht, pp 123–144Google Scholar
  43. 43.
    Gerhards C (1982) Effect of moisture content and temperature on the mechanical properties of wood: an analysis of immediate effects. Wood Fiber Sci 14(1):4–36Google Scholar
  44. 44.
    Skaar C (1988) Wood-water relations. Springer, New YorkCrossRefGoogle Scholar
  45. 45.
    Winandy JE, Rowell RM (1984) The chemistry of wood strength. ACS Publications, WashingtonCrossRefGoogle Scholar
  46. 46.
    Goodman JR, Bodig J (1971) Orthotropic strength of wood in compression. J Wood Sci 4(2):83–94Google Scholar
  47. 47.
    Ross RJ (2010) Wood handbook: wood as an engineering material. U.S. Dep. Agric, MadisonCrossRefGoogle Scholar
  48. 48.
    Cabrero JM, Gebremedhin KG (2010) Evaluation of failure criteria in wood members. In: WCTE 2010: World Conference on Timber Engineering, Riva Del Garda, Trento, ItalyGoogle Scholar
  49. 49.
    Zítek P, Vyhlídal T (2009) Model-based moisture sorption stabilization in historical buildings. Build Environ 44(6):1181–1187CrossRefGoogle Scholar
  50. 50.
    Konopka D, Gebhardt C, Kaliske M (2016) Numerical modelling of wooden structures. J Cult Herit 24:S93–S103Google Scholar

Copyright information

© RILEM 2017

Authors and Affiliations

  1. 1.Institute for Building MaterialsETH ZürichZurichSwitzerland
  2. 2.Laboratory of Applied Wood MaterialsEmpaDübendorfSwitzerland
  3. 3.Former Institute for Building MaterialsETH ZürichZurichSwitzerland
  4. 4.Institute for Structural AnalysisTechnische Universität DresdenDresdenGermany
  5. 5.Institute for Material and Wood TechnologyBern University of Applied SciencesBielSwitzerland
  6. 6.Kernkraftwerk Leibstadt AGLeibstadtSwitzerland

Personalised recommendations