An improved electrokinetic method to consolidate porous materials

  • Jorge Feijoo
  • L. M. Ottosen
  • X. R. Nóvoa
  • Teresa Rivas
  • Iván de Rosario
Original Article

Abstract

Consolidation is considered one of the major restoration treatments applied on cultural heritage. This kind of treatment is focused on to preserve the external weathered layers of stone reducing their degradation caused by external alteration agents (mainly water and soluble salts). However the consolidation using commercial products have some limitations, such as: (1) low penetrability; (2) no chemical and mineralogical affinity with the material to treat and (3) release of toxic compounds (VOCs), during the solvent evaporation. In the last years, a new consolidation method based on electrokinetic techniques was developed. This method allows filling some pores by the precipitation of an inorganic compound. As a result the method allows increasing the penetration depth of current consolidation treatments. However, this method needs to be improved since: (1) no special care is taking in controlling the pH of the solutions in contact with the porous material, which can damage it and (2) it is difficult to determine in which area the consolidation takes place. In this study an electrokinetic consolidation method, which has two steps between which the current is reversed, is proposed to solve all of these problems. The results show that the proposed treatment achieves better results in terms of penetrability and durability of current consolidation treatments, and moreover prevent that the treated material to be exposed to extreme pH values.

Keywords

Sandstone Electrokinetic technique Consolidation Salts Water Cultural heritage 

Notes

Acknowledgements

J. Feijoo work was supported by the Ministerio de Educación, Cultura y Deporte, Spanish Government, through a FPU grant.

References

  1. 1.
    Winkler EM (1997) Stone in architecture: properties, durability, 3rd edn. Springer, Berlin, p 309CrossRefGoogle Scholar
  2. 2.
    Benavente D, Linares-Fernández L, Cultrone G, Sebastián E (2007) Influence of microstructure on the resistance to salt crystallisation damage in Brick. Mater Struct 39:105–113. doi: 10.1617/s11527-005-9037-0 CrossRefGoogle Scholar
  3. 3.
    La Iglesia A, González V, López-Acevedo V, Viedma C (1997) Salt crystallization in porous construction materials I Estimation of crystallization pressure. J Cryst Growth 177:111–118. doi: 10.1016/S0022-0248(96)01072-X CrossRefGoogle Scholar
  4. 4.
    Bubeck A, Walker RJ, Healy D, Dobbs M, Holwell DA (2017) Pore geometry as a control on rock strength. Earth Planet Sci Lett 457:38–48. doi: 10.1016/j.epsl.2016.09.050 CrossRefGoogle Scholar
  5. 5.
    Jefferson DP (1993) Building stone—the geological dimension. Q J Eng Geol 26:305–319. doi: 10.1144/GSL.QJEGH.1993.026.004.06 CrossRefGoogle Scholar
  6. 6.
    Esbert RM, Ordaz J, Alonso FJ, Montoro M (1997) Manual de diagnosis y tratamiento de materiales pétreos y cerámicos. Manuals de diagnosi, vol 5, p 140. ISBN: 84-87104-29-0Google Scholar
  7. 7.
    Gauri KL, Bandyopahyay JK (1999) Carbonate stone: chemical behavior, durability and conservation. Wiley, New York, p 284Google Scholar
  8. 8.
    Hall C, Hoff WD (2009) Water transport in brick, stone and concrete. Cem Concr Aggreg 25:362. doi: 10.1520/CCA10518J Google Scholar
  9. 9.
    Takarli M, Prince W, Siddique R (2008) Damage in granite under heating/cooling cycles and water freeze–thaw condition. Int J Rock Mech Min Sci 45:1164–1175CrossRefGoogle Scholar
  10. 10.
    Ruedrich J, Kirchner D, Siegesmund S (2011) Physical weathering of building stones induced by freeze-thaw action: a laboratory long-term study. Environ Earth Sci 63:1573–1586. doi: 10.1007/s12665-010-0826-6 CrossRefGoogle Scholar
  11. 11.
    Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegrad 46:343–368. doi: 10.1016/S0964-8305(00)00109-8 CrossRefGoogle Scholar
  12. 12.
    Feijoo J, Matyščák O, Ottosen LM, Rivas T, Nóvoa XR (2017) Electrokinetic desalination of protruded areas of stone avoiding the direct contact with electrodes. Mater Struct. doi: 10.1617/s11527-016-0946-x Google Scholar
  13. 13.
    Pel L, Huinink H, Kopinga K (2003) Salt transport and crystallization in porous building materials. In: Magnetic resonance imaging, vol 21, pp 317–320. doi: 10.1016/S0730-725X(03)00161-9
  14. 14.
    Cárdenes V, Mateos FJ, Fernández-Lorenzo S (2014) Analysis of the correlations between freeze-thaw and salt crystallization tests. Environ Earth Sci 71:1123–1134. doi: 10.1007/s12665-013-2516-7 CrossRefGoogle Scholar
  15. 15.
    Franzoni E (2014) Rising damp removal from historical masonries: a still open challenge. Constr Build Mater 54:123–136. doi: 10.1016/j.conbuildmat.2013.12.054 CrossRefGoogle Scholar
  16. 16.
    Charola AE (2000) Salts in the deterioration of porous materials: an overview. J Am Inst Conserv 39:327–343CrossRefGoogle Scholar
  17. 17.
    Unruh J (2001) A revised endpoint for ceramics desalination at the archaeological site of Gordion, Turkey. Stud Conserv 46:81–92. doi: 10.2307/1506839 CrossRefGoogle Scholar
  18. 18.
    Lubelli B, van Hees RPJ (2010) Desalination of masonry structures: fine tuning of pore size distribution of poultices to substrate properties. J Cult Herit 11:10–18. doi: 10.1016/j.culher.2009.03.005 CrossRefGoogle Scholar
  19. 19.
    Vergès-Belmin V, Siedel H (2005) Desalination of masonries and monumental sculptures by poulticing: a review. Restor Build Monum 11:391–408. doi: 10.1515/rbm-2005-6000 Google Scholar
  20. 20.
    Rivas T, Feijoo J, de Rosario I, Taboada J (2017) Use of ferrocyanides on granite desalination by immersion and poultice-based methods. Int J Archit Herit. doi: 10.1080/15583058.2016.1277282 Google Scholar
  21. 21.
    Ottosen LM, Rörig-Dalgård I (2007) Electrokinetic removal of Ca(NO3)2 from bricks to avoid salt-induced decay. Electrochim Acta 52:3454–3463. doi: 10.1016/j.electacta.2006.03.118 CrossRefGoogle Scholar
  22. 22.
    Ottosen LM, Rörig-Dalgaard I (2009) Desalination of a brick by application of an electric DC field. Mater Struct 42:961–971. doi: 10.1617/s11527-008-9435-1 CrossRefGoogle Scholar
  23. 23.
    Feijoo J, Nóvoa XR, Rivas T, Mosquera MJ, Taboada J, Montojo C, Carrera F (2013) Granite desalination using electromigration. Influence of type of granite and saline contaminant. J Cult Herit 14:365–376. doi: 10.1016/j.culher.2012.09.004 CrossRefGoogle Scholar
  24. 24.
    Feijoo J, Ottosen LM, Pozo-Antonio JS (2015) Influence of the properties of granite and sandstone in the desalination process by electrokinetic technique. Electrochim Acta 181:280–287. doi: 10.1016/j.electacta.2015.06.006 CrossRefGoogle Scholar
  25. 25.
    Doehne E, Price CA (2010) Stone conservation. An overview of current research. Published by the Getty Conservation Institute. ISBN 978-1-60606-046-9, p 158Google Scholar
  26. 26.
    Scherer GW, Wheeler GS (2009) Silicate consolidants for stone. Key Eng Mater 391:1–25. doi: 10.1016/j.culher.2006.10.002 CrossRefGoogle Scholar
  27. 27.
    Wheeler G (2005) Alkoxysilanes and the consolidation of stone. J Am Inst Conserv 46:189–191. doi: 10.1007/s13398-014-0173-7.2 Google Scholar
  28. 28.
    De Rosario I, Elhaddad F, Pan A, Benavides R, Rivas T, Mosquera MJ (2015) Effectiveness of a novel consolidant on granite: laboratory and in situ results. Constr Build Mater 76:140–149. doi: 10.1016/j.conbuildmat.2014.11.055 CrossRefGoogle Scholar
  29. 29.
    Price C, Ross K, White G (1988) A further appraisal of the “lime technique” for limestone consolidation, using a radioactive tracer. Stud Conserv 33:178–186. doi: 10.2307/1506313 Google Scholar
  30. 30.
    Sassoni E, Naidu S, Scherer GW (2011) The use of hydroxyapatite as a new inorganic consolidant for damaged carbonate stones. J Cult Herit 12:346–355CrossRefGoogle Scholar
  31. 31.
    Siegesmund S, Snethlage R (2011) Stone in architecture: properties, durability, 4th ed. 2011 Edition. Springer, ISBN-13: 978-3642144745. p 552Google Scholar
  32. 32.
    Slavíková M, Krejcí F, Žemlička J, Pech M, Kotlík P, Jakubek J (2012) X-ray radiography and tomography for monitoring the penetration depth of consolidants in Opuka—the building stone of Prague monuments. J Cult Herit 13:357–364CrossRefGoogle Scholar
  33. 33.
    Slavíková M, Krejcí F, Kotlík P, Jakubek J, Tomandl I, Vacík J (2014) Neutron and high-contrast X-ray micro-radiography as complementary tools for monitoring organosilicon consolidants in natural building stones. Nucl Instrum Methods Phys Res B 338:42–47CrossRefGoogle Scholar
  34. 34.
    Chiantore O, Lazzari M (2001) Photo-oxidative stability of paraloid acrylic protective polymers. Polymer 42:17–27. doi: 10.1016/S0032-3861(00)00327-X CrossRefGoogle Scholar
  35. 35.
    Varas-Muriel MJ, Pérez-Monserrat EM, Vázquez-Calvo C, Fort R (2015) Effect of conservation treatments on heritage stone. Characterisation of decay processes in a case study. Constr Build Mater 95:611–622. doi: 10.1016/j.conbuildmat.2015.07.087 CrossRefGoogle Scholar
  36. 36.
    Balliana E, Ricci G, Pesce C, Zendri E (2016) Assessing the value of green conservation for cultural heritage: positive critical aspects of already available methodologies. Int J Conserv Sci 7:185–202Google Scholar
  37. 37.
    Meloni P, Manca F, Carcangiu G (2013) Marble protection: an inorganic electrokinetic approach. Appl Surf Sci 273:377–385CrossRefGoogle Scholar
  38. 38.
    Bernabeu A, Expósito E, Montiel V, Ordóñez S, Aldaz A (2001) A new electrochemical method for consolidation of porous rocks. Electrochem Commun 3:122–127. doi: 10.1016/S1388-2481(01)00117-5 CrossRefGoogle Scholar
  39. 39.
    Amoros JL, Beltran V, Escardino A, Orts-Ma J (1992) Permeabilidad al aire de soportes cocidos de pavimento cerámico II. Relación entre el coeficiente de permeabilidad al aire y las propiedades características de la estructura porosa del sólido. Bol Soc Esp Ceram Vidr 31(3):207–212Google Scholar
  40. 40.
    Ordonez S, Fort R, Garcia del Cura MA (1997) Pore size distribution and the durability of a porous limestone. Q J Eng GeolHydrogeol 30:221–230. doi: 10.1144/GSL.QJEG.1997.030.P3.04 CrossRefGoogle Scholar
  41. 41.
    Bell FG (1993) Durability of carbonate rock as building stone with comments on its preservation. Environ Geol 21:187–200. doi: 10.1007/BF00775905 CrossRefGoogle Scholar
  42. 42.
    Rossi-Manaresi R, Tucci A (1989) Pore structure and salt crystallization: ‘salt decay’ of Agrigento biocalcarenite and ‘case bardenin’ in sandstone. In: Proceedings 1st international symposium, Bari, ‘The Conservation of monuments in the Mediterranean Basin’, pp 97–100Google Scholar
  43. 43.
    RILEM (Réunion Internationale des Laboratoires d’Essais et de Recherche sur les Matériaux et les Constructions) 1980. Commission 25 PEM. Protection et Erosion des Monuments. Recommandations provisoires. Essais recommandés pour mesurer l’altération des pierres et évaluer l’efficacité des méthodes de traitement. Test No. II. 1: Open porosity and Test II. 2: Bulk and real densitiesGoogle Scholar
  44. 44.
    ICR-CNR- Instituto Centrale do restauro- Commisione Normal. (1985). Doc. NORMAL 11/85. Assorbimento d’acqua per capilaritá. Coefficiente di assorbimento capillareGoogle Scholar
  45. 45.
    ICR-CNR-Instituto Centrale do Restauro-Commisione Normal. (1981). Doc. NORMAL 7/81. Assorbimento d’acqua per immersione totale. Capacitá di imbibizioneGoogle Scholar
  46. 46.
    Tanaka Y (2015) Ion exchange membranes fundamentals and applications, 2nd edn. Elsevier Science. ISBN:9780444633194Google Scholar
  47. 47.
    Castellote M, Andrade C, Alonso C (2000) Electrochemical removal of chlorides Modelling of the extraction, resulting profiles and determination of the efficient time of treatment. Cem Concr Res 30:615–621CrossRefGoogle Scholar
  48. 48.
    Ottosen LM, Ferreira CMD, Christensen IV (2010) Electrokinetic desalination of glazed ceramic tiles. J Appl Electrochem 40:1161–1171. doi: 10.1007/s10800-010-0086-x CrossRefGoogle Scholar
  49. 49.
    Shan H, Xu J, Wang Z, Jiang L, Xu N (2016) Electrochemical chloride removal in reinforced concrete structures: improvement of effectiveness by simultaneous migration of silicate ion. Constr Build Mater 127:344–352. doi: 10.1016/j.conbuildmat.2016.09.137 CrossRefGoogle Scholar

Copyright information

© RILEM 2017

Authors and Affiliations

  1. 1.Dep. Ingeniería de los Recursos Naturales y Medio AmbienteUniversidad de VigoVigoSpain
  2. 2.Department of Civil Engineering Building 117Technical University of DenmarkLyngbyDenmark
  3. 3.Department of Chemical Engineering, ENCOMAT Group, EEIUniversity of VigoVigoSpain

Personalised recommendations