Advertisement

Materials and Structures

, 50:123 | Cite as

Test methods to determine durability of concrete under combined environmental actions and mechanical load: final report of RILEM TC 246-TDC

  • Yan Yao
  • Ling Wang
  • Folker H. Wittmann
  • Nele De Belie
  • Erik Schlangen
  • Hugo Eguez Alava
  • Zhendi Wang
  • Sylvia Kessler
  • Christoph Gehlen
  • Balqis Md. Yunus
  • Juan Li
  • Weihong Li
  • Max. J. Setzer
  • Feng Xing
  • Yin Cao
Original Article

Abstract

At present several methods are available to predict the durability of reinforced concrete structures. In most cases, one dominant deterioration process such as carbonation or chloride penetration is taken into consideration. Experimental results as well as observations in practice show that this is not a realistic and certainly not a conservative approach. In order to test more realistically, RILEM TC 246-TDC, founded in 2011, has developed a method to determine the durability of concrete exposed to the combined action of chloride penetration and mechanical load. In this report, a test method is presented which allows determination of realistic diffusion coefficients for chloride ions in concrete under compressive or tensile stress. Comparative test results from five different laboratories showed that the combination of mechanical and environmental loads may be much more severe than a single environmental load without mechanical loading. Modelling and probabilistic analysis also showed that the obvious synergetic effects cannot be neglected in realistic service life prediction.

Keywords

Concrete durability Service life prediction Chloride ion diffusion Compressive stress Tensile stress Combined actions 

Notes

Acknowledgements

The financial support from the following four organizations is gratefully acknowledged: (1) National Natural Science Foundation of China (Grant No. 51320105016), (2) the Ecuadorian National Secretary for Science and Technology “SENESCYT”, (3) ESPOL University (Ecuador) and Magnel Laboratory for Concrete Research of Ghent University (Belgium), (4) Ministry of Higher Education Malaysia (MOHE) and Universiti Teknologi MARA (UiTM).

References

  1. 1.
    Eurocode 2 (2004) Design of concrete structures, Part 1-1: General rules and rules for buildings, EN 1992-1-1Google Scholar
  2. 2.
    ACI 318-14 (2014) Building code requirements for structural concrete and commentaryGoogle Scholar
  3. 3.
    JSCE Guidelines for Concrete No. 15 (2007) Standard specifications for concrete structures—designGoogle Scholar
  4. 4.
    GB 50010 Chinese National Standard (2010) Code for design of concrete structuresGoogle Scholar
  5. 5.
    Schießl P, Bamforth P, Baroghel-Bouny V, Corley G, Faber M, Forbes J, Gehlen C et al (2006) Model code for service life design. fib bulletin 34Google Scholar
  6. 6.
    ASCE (2013) 2013 Report card for America’s InfrastructureGoogle Scholar
  7. 7.
    Wittmann FH, Zhao T, Jiang F, Wan X (2012) Influence of combined actions on durability and service life of reinforced concrete structures exposed to aggressive environment. Restor Build Monum 18:105–112Google Scholar
  8. 8.
    Wan X, Wittmann FH, Zhao T (2011) Influence of mechanical load on service life of reinforced concrete structures under dominant influence of carbonation. Restor Build Monum 17:103–110Google Scholar
  9. 9.
    Yao Y, Wang L, Wittmann FH (eds) (2013) Publications on durability of reinforced concrete structures under combined mechanical loads and environmental actions. An Annotated Bibliography, RILEM TC 246-TDCGoogle Scholar
  10. 10.
    GB 175 Chinese National Standard (2007) Common Portland CementGoogle Scholar
  11. 11.
    BS EN 197-1 Cement (2011) Composition, specifications and conformity criteria for common cements-part 1: cementGoogle Scholar
  12. 12.
    RILEM TC 107-CSP Recommendation (1998) Measurement of time-dependent strains of concrete. Mater Struct 31:507–512CrossRefGoogle Scholar
  13. 13.
    Recommendation of RILEM TC 246-TDC: Influence of applied stress on chloride diffusion. Submitted to Materials and StructuresGoogle Scholar
  14. 14.
    EN 14629 (2007) Products and systems for the protection and repair of concrete structures—test methods—determination of chloride content in hardened concreteGoogle Scholar
  15. 15.
    EN 12390-11 (2015) Determination of the chloride resistance of concrete, unidirectional diffusionGoogle Scholar
  16. 16.
    Gehlen C, Bartholemew M, Edvardsen C, Ferreira MV, Greve-Dierfeld S, Gulikers J, Helland S, Markeset G, McKenna P, Papworth F, Pielstick B, Rahimi A (2015) Benchmarking of deemed-to-satisfy provisions in standards, fib bulletin 76: ISBN: 978-88394-116-8, May 2015Google Scholar
  17. 17.
    Setzer MJ, Heine P, Kasparek S, Palecki S, Auberg R, Feldrappe V, Siebel E (2004) Internal damage of concrete due to frost action. Mater Struct 31:743–753CrossRefGoogle Scholar
  18. 18.
    RILEM TC 117-FDC Recommendation (1996) CDF test—test method for the freeze thaw and deicing resistance of concrete—tests with sodium chloride (CDF). Mater Struct 29:523–528CrossRefGoogle Scholar
  19. 19.
    ISO 5725-1 (1994) Accuracy (trueness and precision) of measurement methods and resultsGoogle Scholar
  20. 20.
    Setzer MJ, Development of the Micro-Ice-Lens Model, Setzer MJ, Auberg R, Keck H-J (2002) Frost resistance of concrete. In: Proceedings of Intern. RILEM Workshop, Essen 2002. RILEM Proceedings of 24. RILEM Publ. S.A.R.L., Cachan-Cedex, France, pp 133–146Google Scholar

Copyright information

© RILEM 2016

Authors and Affiliations

  • Yan Yao
    • 1
  • Ling Wang
    • 1
  • Folker H. Wittmann
    • 2
  • Nele De Belie
    • 3
  • Erik Schlangen
    • 4
  • Hugo Eguez Alava
    • 3
  • Zhendi Wang
    • 1
  • Sylvia Kessler
    • 5
  • Christoph Gehlen
    • 5
  • Balqis Md. Yunus
    • 4
  • Juan Li
    • 1
  • Weihong Li
    • 6
  • Max. J. Setzer
    • 7
  • Feng Xing
    • 8
  • Yin Cao
    • 1
  1. 1.State Key Laboratory of Green Building MaterialsChina Building Materials AcademyBeijingChina
  2. 2.Aedificat Institute FreiburgFreiburg im BreisgauGermany
  3. 3.Ghent UniversityGhentBelgium
  4. 4.Delft University of TechnologyDelftThe Netherlands
  5. 5.Technical University of MunichMunichGermany
  6. 6.Dalian UniversityDalianChina
  7. 7.WISSBAU® Consultant Engineering CorporationEssenGermany
  8. 8.Shenzhen UniversityShenzhenChina

Personalised recommendations