Advertisement

Materials and Structures

, 50:82 | Cite as

Electrokinetic desalination of protruded areas of stone avoiding the direct contact with electrodes

  • J. Feijoo
  • O. Matyščák
  • L. M. Ottosen
  • T. Rivas
  • X. R. Nóvoa
Original Article

Abstract

Soluble salts are considered one of the main deterioration factors of porous building materials such as rocks, bricks or granites. The desalination treatments currently used in order to mitigate this alteration process are usually applied directly on the affected areas, which have often a low degree of cohesion precisely due to the deteriorating effect of the salts. The present study aimed to investigate the evaluation of a new approach based on electrokinetic techniques to desalinate rocks in monuments, specifically to desalinate carved reliefs. The procedure avoids the direct contact with the areas highly affected by salts, which usually show loss of cohesion due to salt crystallization processes, by placing the electrodes on adjacent areas less contaminated with salts. This fact represents another difficulty in the desalination process because the electric field must be adapted to the shape of the sculptural motif. An ashlar of sandstone highly contaminated with salts in a protruded area located in its central part was used for this purpose. The results showed that the electrokinetic setup proposed allowed to achieve high percentages of salt content reduction (above 80 %) in the protruded area of the sandstone highly contaminated with salts. Therefore, these results confirmed that it was possible to desalinate the sandstone using electrokinetic methods without the need to put in contact the affected areas with the equipment, reducing the possibility of altering it by manipulation.

Keywords

Electrokinetic technique Desalination Soluble salts Chloride Nitrate Sulphate 

Notes

Acknowledgments

This work was supported by the project CTM2010-19584 funded by Ministerio de Ciencia y Tecnología from Spanish Government 2010. J. Feijoo work is supported by the Ministerio de Educación, Cultura y Deporte, Spanish Government, through a FPU grant. The analyses of IC were performed in the Department of Civil Engineering (BYG) from the Technical University of Denmark (DTU) and the pore size distribution was performed in the Department of Chemical Engineering (Encomat group) from the University of Vigo.

References

  1. 1.
    Charola AE, Pühringer J, Steiger M (2007) Gypsum: a review of its role in the deterioration of building materials. Environ Geol 52:339–352CrossRefGoogle Scholar
  2. 2.
    La Iglesia A, González V, López-Acevedo V, Viedma C (1997) Salt crystallization in porous construction materials I. Estimation of crystallization pressure. J Cryst Growth 177:111–118CrossRefGoogle Scholar
  3. 3.
    Steiger M (2005) Crystal growth in porous materials-I: the crystallization pressure of large crystals. J Cryst Growth 282:455–469CrossRefGoogle Scholar
  4. 4.
    Tsui N, Flatt RJ, Scherer GW (2003) Crystallization damage by sodium sulfate. J Cult Herit 4:109–115CrossRefGoogle Scholar
  5. 5.
    Honeyborne DB (1998) Weathering and decay of masonry. In: Ashurst J, Dimes FG (eds) Conservation of building and decorative stone. Butterworth-Heinemann, Oxford, pp 153–184Google Scholar
  6. 6.
    Watt D, Colston B (2000) Investigating the effects of humidity and salt crystallization on medieval masonry. Build Environ 35:737–749CrossRefGoogle Scholar
  7. 7.
    Cardell C, Delalieux F, Roumpopoulos K, Moropoulous A, Auger F, Van Greeken R (2003) Salt-induced decay in calcareous stone monuments and buildings in a marine environment in SW France. Constr Build Mater 17:165–179CrossRefGoogle Scholar
  8. 8.
    Charola AE (2000) Salts in the deterioration of porous materials. An overview. J Am Inst Conserv 39:327–343CrossRefGoogle Scholar
  9. 9.
    Pel L, Huinink H, Kopinga K (2003) Salt transport and crystallization in porous building materials. Magn Reson Imaging 21:317–320CrossRefGoogle Scholar
  10. 10.
    Lubelli B, van Hees RPJ (2007) Effectiveness of crystallization inhibitors in preventing salt damage in building materials. J Cult Herit 8:223–234CrossRefGoogle Scholar
  11. 11.
    Lubelli B, van Hees RPJ (2010) Desalination of masonry structures: fine tuning of pore size distribution of poultices to substrate properties. J Cult Herit 11:10–18CrossRefGoogle Scholar
  12. 12.
    Ottosen LM, Rörig-Dalgaard I (2007) Electrokinetic removal of Ca(NO3)2 from bricks to avoid salt-induced decay. Electrochim Acta 52:3454–3463CrossRefGoogle Scholar
  13. 13.
    Rivas T, Alvarez E, Mosquera MJ, Alejano L, Taboada J (2010) Crystallization modifiers applied in granite desalination: the role of the stone pore structure. Constr Build Mater 24:766–776CrossRefGoogle Scholar
  14. 14.
    Setina J, Kirilova S (2012) Clay based poultices for desalination of building materials. J Sustain Archit Civ Eng. ISSN 2029-9990Google Scholar
  15. 15.
    Unhruh J (2001) A revised endpoint for ceramics desalination at the archaeological site of Gordon-Turkey. Stud Conserv 46:81–92CrossRefGoogle Scholar
  16. 16.
    Feijoo J, Novoa XR, Rivas T, Mosquera MJ, Taboada J, Montojo C et al (2013) Granite desalination using electromigration. Influence of type of granite and saline contaminant. J Cult Herit 14:365–376CrossRefGoogle Scholar
  17. 17.
    Lukaszewicz JW (1996a) The influence of stone preconsolidation with ethyl silicate on soluble salts removal. In: J Riederer (ed) Proceedings of the eighth international conference on deterioration and conservation of stone: Berlin, 30 September-4, pp 1203–1209Google Scholar
  18. 18.
    Lukaszewicz JW (1996b) The influence of stone preconsolidation with ethyl silicate on deep consolidation. In: J Riederer (eds) Proceedings of the eighth international conference on deterioration and conservation of stone: Berlin, 30 September-4, pp 1209–1215Google Scholar
  19. 19.
    Pel L, Sawdy A, Voronina V (2010) Physical principles and efficiency of salt extraction by poulticing. J Cult Herit 11:59–67CrossRefGoogle Scholar
  20. 20.
    Rörig-Dalgaard I, Ottosen LM, Christensen IV (2008) Desalination of a wall section with murals by electromigration. In: Proceedings of the international conference salt weathering on buildings and stone sculptures. 22–24 October 2008. The National Museum Copenhagen, Denmark. Technical University of Denmark, pp 361–371Google Scholar
  21. 21.
    Ottosen LM, Christensen IV, Rörig-Dalgaard I (2012) Electrochemical desalination of salt infected limestone masonry of a historic warehouse. Structural Faults and Repair. EdinburghGoogle Scholar
  22. 22.
    Rörig-Dalgaard I (2013) Development of a poultice for electrochemical desalination of porous building materials: desalination effect and pH changes. Mater Struct 46:959–970CrossRefGoogle Scholar
  23. 23.
    RILEM (RéunionInternationale des Laboratoiresd’Essaiset de Recherchesur les Matériauxet les Constructions) (1980a) Commission 25 PEM. Protection et Erosion des Monuments. Recommandationsprovisoires. Essaisrecommandés pour mesurerl’altération des pierres et évaluerl’efficacité des méthodes de traitement. Test No. II. 1: Open porosity and Test II. 2: Bulk and real densitiesGoogle Scholar
  24. 24.
    ICR-CNR-Instituto Centrale do Restauro-Commisione Normal (1981) Doc. NORMAL 7/81. Assorbimentod’acqua per immersionetotale. Capacitá di imbibizioneGoogle Scholar
  25. 25.
    RILEM- RéunionInternationale des Laboratoiresd’Essaiset de Recherchesur les Matériauxet les Constructions (1980b) Commission 25 PEM. Protection et Erosion des Monuments. Recommandationsprovisoires. Essaisrecommandés pour mesurerl’altération de pierres et évaluerl’efficacité des méthodes de traitement. Test nº 11.5, Evaporation curveGoogle Scholar
  26. 26.
    ICR-CNR-Instituto Centrale do restauro-Commisione Normal (1985) Doc. NORMAL 11/85. Assorbimentod’acqua per capilaritá. Coefficiente di assorbimento capillareGoogle Scholar
  27. 27.
    Feijoo J, Ottosen LM, Pozo-Antonio I (2015) Influence of the properties of granite and sandstone in the desalination process by electrokinetic technique. Electrochim Acta 181:280–287CrossRefGoogle Scholar
  28. 28.
    Castellote M, Andrade C, Alonso C (2000) Electrochemical removal of chlorides. Modelling of extraction, resulting profiles and determination of the efficient time of treatment. Cem Concr Res 30:615–621CrossRefGoogle Scholar
  29. 29.
    Ottosen LM, Pedersen AJ, Rörig-Dalgaard I (2007) Salt-related problems in brick masonry and electrokinetic removal of salts. J Build Apprais 3(3):181–194CrossRefGoogle Scholar
  30. 30.
    Ottosen LM, Christensen IV, Rörig-Dalgaard I, Pernille-Jensen E, Hansen HK (2008) Utilization of electromigration in civil and environmental engineering—processes, transport rates and matrix changes. J Environ Sci Health Part A 43(8):795–809CrossRefGoogle Scholar
  31. 31.
    Ottosen LM, Rörig-Dalgaard I (2009) Desalination of a brick by application of an electric DC field. Mater Struct 42:961–971CrossRefGoogle Scholar
  32. 32.
    Ottosen LM, Ferreira CMD, Christensen IV (2010) Electrokinetic desalination of glazed ceramic tiles. J Appl Electrochem 40:1161–1171CrossRefGoogle Scholar
  33. 33.
    Auras M (2008) Poultices and mortars for salt contaminated masonry and stone objects. In: Proceedings of the international conference salt weathering on buildings and stone sculptures 22–24 October 2008. The National Museum Copenhagen, Denmark. Technical University of DenmarkGoogle Scholar
  34. 34.
    Lubelli B, Van Hess RPJ, De Clercq H (2011) Fine tuning of desalination poultices; try-outs in practice SWBSS 2011. LimassolGoogle Scholar
  35. 35.
    ÖNOR.M.B. 3355-1 (2006) Trockenlegung von feuchtemMauerwerk—Teil 1: Bauwerksdiagnose und Planungsgrundlagen Berlin. ASI Austrian Standards Institute ÖsterreichischesNormungsinstitut (Herausgeber) Deutschland, Bundesrepublik, BeuthVerlagGoogle Scholar
  36. 36.
    Winkler EM (1997) Stone in architecture: properties, durability, 3rd edn. Springer, Berlin, p 309CrossRefGoogle Scholar
  37. 37.
    Arya C, Sa’id-Shawqi Q (1996) Factors influencing electrochemical removal of chloride from concrete. Cem Concr Res 26(6):851–860CrossRefGoogle Scholar
  38. 38.
    Díaz B, Nóvoa XR, Puga B, Vivier V (2014) Macro and micro aspects of the transport of chlorides in cementitious membranes. Electrochim Acta 124:61–68CrossRefGoogle Scholar
  39. 39.
    Koleva DA, Copuroglu O, Van Breugel K, Ye G, de Wit JHW (2008) Electrical resistivity and microstructural properties of concrete materials in conditions of current flow. Cem Concr Compos 30:731–744CrossRefGoogle Scholar
  40. 40.
    Paz García JM, Johannesson B, Ottosen LM, Alshawabkeh AN, Ribeiro AB, Rodríguez-Maroto JM (2012) Modeling of electrokinetic desalination of bricks. Electrochim Acta 86:213–222CrossRefGoogle Scholar
  41. 41.
    Paz García JM, Johannesson B, Ottosen LM, Ribeiro AB, Rodríguez-Maroto JM (2013) Simulation-based analysis of the differences in the removal rate of chlorides, nitrates and sulfates by electrokinetic desalination treatments. Electrochim Acta 89:436–444CrossRefGoogle Scholar
  42. 42.
    Bertolini L, Coppola L, Gastaldi M, Redaelli E (2009) Electroosmotic transport in porous construction materials and dehumidification of masonry. Constr Build Mater 23:254–263CrossRefGoogle Scholar
  43. 43.
    Ottosen LM, Rörig-Dalgaard I (2006) Drying brick masonry by electro-osmosis. In: Proceedings from 7th international masonry conference. London, pp 31–41Google Scholar

Copyright information

© RILEM 2016

Authors and Affiliations

  • J. Feijoo
    • 1
  • O. Matyščák
    • 2
  • L. M. Ottosen
    • 3
  • T. Rivas
    • 1
  • X. R. Nóvoa
    • 4
  1. 1.Departamento de Enxeñaría dos Recursos Naturais e Medioambiente, E.T.S.I. de MinasUniversidade de VigoVigoSpain
  2. 2.Department of Civil EngineeringBrno University of TechnologyBrnoCzech Republic
  3. 3.Department of Civil EngineeringTechnical University of DenmarkKongens LyngbyDenmark
  4. 4.Departamento de Enxeñaría Química, E.E.I. Industrial, ENCOMAT GroupUniversidade de VigoVigoSpain

Personalised recommendations