Materials and Structures

, 50:8 | Cite as

Influence of the binder on the behaviour of mortars exposed to H2S in sewer networks: a long-term durability study

  • Jean Herisson
  • Marielle Guéguen-Minerbe
  • Eric D. van Hullebusch
  • Thierry Chaussadent
Original Article


The present study deals with the exposure of four different mortar formulations in the headspace of two distinct sewer networks prone to biodeterioration phenomenon due to the presence of hydrogen sulphide. Cylindrical specimens composed of two cements, ordinary Portland cement (OPC) and calcium aluminate cement (CAC), with or without a substitution of 75 % of cement by blast furnace slag (BFS) were prepared and exposed. During the exposure, the evolution of cement materials was monitored. After 4 years exposure, OPC materials without BFS are deeply deteriorated at high speed. Best performances have been observed with CAC mortars correlated to their higher content in aluminium ion (Al3+). The rank of durability observed on site is OPC < OPC+BFS < CAC+BFS < CAC. Molecular biology analysis revealed that microbial diversity is varying according to binder type as well as during the exposure duration.


Biodeterioration Hydrogen sulphide (H2S) In situ exposition Sewer networks Calcium aluminate cement (CAC) Ordinary Portland cement (OPC) Blast furnace slag (BFS) 



The authors gratefully thank Nadia Dominique and Issam Nour for their involvement in the on-site experimental work. They also would like to acknowledge Kerneos for providing cementitious materials and financial support. Finally, they would like to thank Veolia Eau, SIBA, and SAGEBA-ELOA for allowing access to sewer networks and for monitoring environmental parameters.


  1. 1.
    United States Environmental Protection Agency (1974) Process design manual for sulfide control in sanitary sewerage systemsGoogle Scholar
  2. 2.
    Islander RL, Devinny JS, Mansfeld F, Postyn A, Shih H (1991) Microbial ecology of crown corrosion in sewers. J Environ Eng 117:751–770CrossRefGoogle Scholar
  3. 3.
    United States Environmental Protection Agency (1985) Design manual, odor and corrosion control in sanitary sewerage systems and treatment plantsGoogle Scholar
  4. 4.
    Bock E, Sand W (1986) Applied electron microscopy on the biogenic destruction of concrete and blocks-use of the transmission electron microscope for identification of mineral acid producing bacteria. In: Bayles J, Gouda GR, Nisperos A (eds) Proceedings of the 8th international conference on cement microscopy, International Cement Microscopy Association, Ducanville, TexasGoogle Scholar
  5. 5.
    Roberts DJ, Nica D, Zuo G, Davis JL (2002) Quantifying microbially induced deterioration of concrete: initial studies. Int Biodeterior Biodegrad 49:227–234CrossRefGoogle Scholar
  6. 6.
    Herisson J, van Hullebusch ED, Moletta Denat M, Taquet P, Chaussadent T (2013) Toward an accelerated biodeterioration test to understand the behaviour of Portland and calcium aluminate cementitious materials in sewer networks. Int Biodeterior Biodegrad 84:236–243CrossRefGoogle Scholar
  7. 7.
    Kelly D, Wood A (2000) Reclassification of some species of Thiobacillus to the newly designated genera Aciditiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516CrossRefGoogle Scholar
  8. 8.
    Okabe S, Odagiri M, Ito T, Satoh H (2007) Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Appl Environ Microbiol 73:971–980CrossRefGoogle Scholar
  9. 9.
    Jensen HS, Nielsen AH, Hvitved-Jacobsen T, Vollertsen J (2008) Survival of hydrogen sulfide oxidizing bacteria on corroded concrete surfaces of sewer systems survival. Water Sci Technol 57:1721–1726CrossRefGoogle Scholar
  10. 10.
    Satoh H, Odagiri M, Ito T, Okabe S (2009) Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system. Water Res 43:4729–4739CrossRefGoogle Scholar
  11. 11.
    Valix M, Zamri D, Mineyama H, Cheung WH, Shi J, Bustamante H (2012) Microbiologically induced corrosion of concrete and protective coatings in gravity sewers. Chin J Chem Eng 20:433–438CrossRefGoogle Scholar
  12. 12.
    Alexander MG, Goyns A, Fourie C (2008) Experiences with a full-scale experimental sewer made with CAC and other cementitious binders in Virginia. In: Fentiman CH, Mangabhai RJ, Scrivener KL (eds) South Africa—Calcium Aluminate Cement: Proceedings of the Centenary Conference, Avignon, 30 June–2 July 2008. IHS BRE Press, Watford. EP94. ISBN 978-1-84806-045-6Google Scholar
  13. 13.
    Peyre M, Lavigne A, Bertron L, Auer G, Hernandez-Raquet JN, Foussard G, Escadeillas A, Cockx E (2015) Paul, An innovative approach to reproduce the biodeterioration of industrial cementitious products in a sewer environment. Part I: test design. Cem Concr Res 73:246–256CrossRefGoogle Scholar
  14. 14.
    Peyre-Lavigne M, Bertron A, Botanch C, Auer L, Hernandez-Raquet G, Cockx A, Foussard JN, Escadeillas G, Paul E (2016) Innovative approach to simulating the biodeterioration of industrial cementitious products in sewer environment. Part II: validation on CAC and BFSC linings. Cem Concr Res 79:409–418CrossRefGoogle Scholar
  15. 15.
    Herisson J, Guéguen-Minerbe M, van Hullebusch ED, Chaussadent T (2014) Development of a reproducible, representative and accelerated biogenic corrosion test to deliver durable structures in sewer networks. In: Fentiman CH, Mangabhai RJ, Scrivener KL (eds) Proceedings of the international conference on calcium aluminate cement, Avignon, 18–21 May 2014. IHS BRE Press, 2014, EP104. ISBN 978-1-84806-316-7Google Scholar
  16. 16.
    AFNOR (1995) Methods of test for dense shaped refractory products. Determination of bulk density, apparent porosity and true porosity. EN 993-1: B40-321Google Scholar
  17. 17.
    Ettenauer JD, Piñar G, Lopandic K, Spangl B, Ellersdorfer G, Voitl C, Sterflinger K (2012) Microbes on building materials—evaluation of DNA extraction protocols as common basis for molecular analysis. Sci Total Environ 439:44–53CrossRefGoogle Scholar
  18. 18.
    Godon JJ, Zumstein E, Dabert P, Habouzit F, Moletta R (1997) Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl Environ Microbiol 63:2802–2813Google Scholar
  19. 19.
    Delbès C, Moletta R, Godon JJ (2000) Monitoring of activity dynamics of an anaerobic digester bacterial community using 16S rRNA polymerase chain reaction - single-strand conformation polymorphism analysis. Environ Microbiol 2:506–515CrossRefGoogle Scholar
  20. 20.
    Delbès C, Moletta R, Godon JJ (2001) Bacterial and archaeal 16S rDNA and 16S rRNA dynamics during an acetate crisis in an anaerobic digestor ecosystem. FEMS Microbiol Ecol 35:19–26CrossRefGoogle Scholar
  21. 21.
    United States Environmental Protection Agency (1991) Hydrogen sulfide corrosion: its consequences, detection and control, Technical report, 430/09-91-010Google Scholar
  22. 22.
    Zivica V, Bajza A (2001) Acidic attack of cement based materials a review. Part 1. Principle of acidic attack. Constr Build Mater 15:331–340CrossRefGoogle Scholar
  23. 23.
    Okabe S, Itoh T, Satoh H, Watanabe Y (1999) Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms. Appl Environ Microbiol 65:5107–5116Google Scholar
  24. 24.
    Milde K, Sand W, Wolf W, Bock E (1983) Thiobacilli of the corroded concrete walls of the Hamburg sewer system. J Gen Microbiol 129:1327–1333Google Scholar
  25. 25.
    Sand W (1987) Importance of hydrogen sulfide, thiosulfate, and methylmercaptan for growth of Thiobacilli during simulation of concrete corrosion. Appl Environ Microbiol 53:1645–1648Google Scholar
  26. 26.
    Mori T, Nonaka T, Tazaki K, Koga M, Hikosaka Y, Noda S (1992) Interactions of nutrients, moisture, and pH on microbial corrosion of concrete sewer pipes. Water Res 26:29–37CrossRefGoogle Scholar
  27. 27.
    Vincke E, Boon N, Verstraete W (2001) Analysis of the microbial communities on corroded concrete pipes – a case study. Appl Microbiol Biotechnol 57:776–785CrossRefGoogle Scholar
  28. 28.
    Attiogbe EK, Rizkalla SH (1988) Response of concrete to sulfuric acid attack. ACI Mater J 85:481–488Google Scholar
  29. 29.
    Gruyaert E, Van den Heede P, Maes M, De Belie N (2012) Investigation of the influence of blast-furnace slag on the resistance of concrete against organic acid or sulphate attack by means of accelerated degradation tests. Cem Concr Res 42:173–185CrossRefGoogle Scholar
  30. 30.
    Shi C, Stegemann JA (2000) Acid corrosion resistance of different cementing materials. Cem Concr Res 30:803–808CrossRefGoogle Scholar
  31. 31.
    Herisson J, Guéguen-Minerbe M, van Hullebusch ED, Chaussadent T (2014) Behaviour of different cementitious material formulations in sewer networks. Water Sci Technol 69:1502–1508CrossRefGoogle Scholar
  32. 32.
    Ehrich S (1998) Untersuchungen zur biogenen Schwefelsäurekorrosion von zementgebundenen Baustoffen—Investigations to biogenic sulfuric acid corrosion of cement based materials, DissertationGoogle Scholar
  33. 33.
    Fischer J, Quentmeier A, Gansel S, Sabados V, Friedrich CG (2002) Inducible aluminum resistance of Acidiphilium cryptum and aluminum tolerance of other acidophilic bacteria. Arch Microbiol 178:554–558CrossRefGoogle Scholar
  34. 34.
    Watling HR, Shiers DW, Zhang GJ (2012) Microbial behaviour under conditions relevant to heap leaching: studies using the sulfur-oxidising, moderate thermophile Acidithiobacillus caldus. Hydrometallurgy 127–128:104–111CrossRefGoogle Scholar
  35. 35.
    Guarcidueñas Piña R, Cervantes C (1996) Microbial interactions with aluminium. BioMet. 9:311–316CrossRefGoogle Scholar
  36. 36.
    Bruce RC, Warrell LA, Edward DG, Bell LC (1988) Effects of aluminum and calcium in the soil solution of acid soils on root elongation of Glycine max cv. For Agric Res 38:319–338CrossRefGoogle Scholar
  37. 37.
    Silver S (1983) Bacterial interactions with mineral cations and anions: good ions and bad. In: Westbroek P, DeJong EW (eds) Biomineralization and biological metal accumulation. Reidel, Dordrecht, pp 439–457CrossRefGoogle Scholar
  38. 38.
    MacDonald TL, Martin RB (1988) Aluminium in biological systems. Trends Biochem Sci 13:15–19CrossRefGoogle Scholar
  39. 39.
    Illmer P, Erlebach C (2003) Influence of Al on growth, cell size and content of intracellular water of Arthrobacter sp. PI/1-95. Antonie Van Leeuwenhoek 84:239–246CrossRefGoogle Scholar
  40. 40.
    Majumdar AJ, Singh B, Edmonds RN (1990) hydration of mixtures of aluminous cement and blast furnace slag. Cem Concr Res 20:197–208CrossRefGoogle Scholar
  41. 41.
    Majumdar AJ, Singh B (1992) Properties of some blended high-alumina cements. Cem Concr Res 22:1101–1114CrossRefGoogle Scholar
  42. 42.
    Okuyama K, Morioka M, Watanabe K, Yokozeki K (2004) Aluminous Cement, Furnace blast Slag mortar, compressive strength, acid resistance, chloride resistance. Proc Jpn Concr Inst 26:621–626Google Scholar
  43. 43.
    Tabara K, Sugiyama T, Morioka M, Sakai E (2009) Acid resistance of various mortars to the inorganic acid. Cem Sci Concr Technol 63:386–392CrossRefGoogle Scholar
  44. 44.
    Ancion PY, Learn G, Lewis D (2010) Three common metal contaminants of urban runoff (Zn, Cu & Pb) accumulate in freshwater biofilm and modify embedded bacterial communities. Environ Pollut 158:2738–2745CrossRefGoogle Scholar
  45. 45.
    Yaganza ES, Rioux D, Simard M, Arul J, Tweddell RJ (2004) Ultrastructural alterations of Erwinia carotovora subsp. atroseptica caused by treatment with aluminum chloride and sodium metabisulfite. Appl Environ Microbiol 70:6800–6808CrossRefGoogle Scholar
  46. 46.
    Jowkar MM, Kafi M, Khalighi A, Hasanzadeh N (2012) Evaluation of aluminum sulfate as vase solution biocide on postharvest microbial and physiological properties of ‘Cherry Brandy’ rose. Ann Biol Res 3:1132–1144Google Scholar
  47. 47.
    Pankey GA, Sabath LD (2004) Clinical relevance of bacteriostatic versus bacteriocidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin Infect Dis 38:864–870CrossRefGoogle Scholar
  48. 48.
    Nielsen AH, Vollertsen J, Hvitved-Jacobsen T (2004) Chemical sulfide oxidation of wastewater—effects of pH and temperature. Water Sci Technol 50:185–192Google Scholar
  49. 49.
    Nielsen AH, Vollertsen J, Hvitved-Jacobsen T (2006) Kinetics and stoichiometry of aerobic sulfide oxidation in wastewater from sewers—effects of pH and temperature. Water Environ Res 78:275–283CrossRefGoogle Scholar
  50. 50.
    Jiang G, Keller J, Bond PL (2014) Determining the long-term effects of H2S concentration, relative humidity and air temperature on concrete sewer corrosion. Water Res 65:157–169CrossRefGoogle Scholar
  51. 51.
    O’Dea V (2007) Understanding biogenic sulfide corrosion. Mater Perform 46:36–39Google Scholar
  52. 52.
    De Belie N, Monteny J, Beeldens A, Vincke E, Van Gemert D, Verstraete W (2004) Experimental research and prediction of the effect of chemical and biogenic sulfuric acid on different types of commercially produced concrete sewer pipes. Cem Concr Res 34:2223–2236CrossRefGoogle Scholar
  53. 53.
    Ismail N, Nonaka T, Noda S, Mori T (1993) Effect of carbonation on microbial corrosion of concrete. J Constr Manag Eng 20:133–138Google Scholar
  54. 54.
    Scrivener K, De Belie N (2012) Chapter 12, bacteriogenic sulfuric acid attack of cementitious materials in sewage systems. In: Alexander M et al. (eds) Performance of cement-based materials in aggressive aqueous environments, pp. 305–318. RILEM State-of-the-Art Reports 10. Doi: 10.1007/978-94-007-5413-3_12

Copyright information

© RILEM 2016

Authors and Affiliations

  • Jean Herisson
    • 1
  • Marielle Guéguen-Minerbe
    • 2
  • Eric D. van Hullebusch
    • 3
  • Thierry Chaussadent
    • 2
  1. 1.Kerneos Research CenterVaulx-milieuFrance
  2. 2.Université Paris-Est, MAST, CPDM, IFSTTARMarne-la-ValléeFrance
  3. 3.Université Paris-Est, Laboratoire Géomatériaux et EnvironnementMarne-la-ValléeFrance

Personalised recommendations