Materials and Structures

, 50:14 | Cite as

Effect of superabsorbent polymers (SAP) on the freeze–thaw resistance of concrete: results of a RILEM interlaboratory study

  • Viktor Mechtcherine
  • Christof Schröfl
  • Mateusz Wyrzykowski
  • Michaela Gorges
  • Pietro Lura
  • Daniel Cusson
  • Jim Margeson
  • Nele De Belie
  • Didier Snoeck
  • Kazuo Ichimiya
  • Shin-Ichi Igarashi
  • Vyacheslav Falikman
  • Stefan Friedrich
  • Jürgen Bokern
  • Patricia Kara
  • Alicja Marciniak
  • Hans-Wolf Reinhardt
  • Sören Sippel
  • António Bettencourt Ribeiro
  • João Custódio
  • Guang Ye
  • Hua Dong
  • Jason Weiss
Original Article


This article presents the results of an interlaboratory experimental study performed by 13 international research groups within the framework of the activities of the RILEM Technical Committee 225-SAP “Applications of Superabsorbent Polymers in Concrete Construction”. Two commercially available superabsorbent polymers (SAP) were tested in terms of their influence on the freeze–thaw resistance of ordinary concrete. To test the robustness of the method, all participating laboratories used locally produced materials. Furthermore, following this aim, various accelerated methods were used to estimate the resistance of the concrete to freeze–thaw cycles. The effect of adding SAP was from insignificant to considerably positive in terms of improvement in material performance as determined by reduced mass loss after freeze–thaw cycles; only one participant observed worsening of the material behaviour. At the same time, due to the addition of SAP, a much less pronounced decrease in the dynamic Young’s modulus was observed as a result of freeze–thaw testing without deicing salt.


Air-entraining agent CDF test CIF test Deicing salt Frost resistance Freeze–thaw Interlaboratory study Scaling Slab test Superabsorbent polymer 



M. Gorges thanks the European Social Fund (ESF) and Sächsische Aufbaubank (SAB) for financially supporting her research in the framework the Saxonian Innovation Promotion Program (Grant 100117155). As a Research Assistant of the Research Foundation-Flanders (FWO-Vlaanderen), D. Snoeck extends his thanks the foundation for its financial support (1.1.D74.15 N).


  1. 1.
    Jensen OM, Hansen PF (2001) Water-entrained cement-based materials: I. Principles and theoretical background. Cem Concr Res 31:647–654CrossRefGoogle Scholar
  2. 2.
    Mechtcherine V, Reinhardt H W (2012) Application of superabsorbent polymers in concrete construction. State-of-the-art report of the RILEM TC 225-SAP”, Springer, Heidelberg, 2012Google Scholar
  3. 3.
    Mechtcherine V, Schröfl C (2014) RILEM Proceedings PRO 95: application of superabsorbent polymers and other chemical admixtures in concrete construction. RILEM Publications S.A.R.L, BagneuxGoogle Scholar
  4. 4.
    Mechtcherine V, Secrieru E, Schröfl C (2015) Effect of superabsorbent polymers (SAP) on rheological properties of fresh cement-based mortars—development of yield stress and plastic viscosity over time. Cem Concr Res 67:52–65CrossRefGoogle Scholar
  5. 5.
    Schroefl C, Mechtcherine V, Vontobel P, Hovind J, Lehmann E (2015) Sorption kinetics of superabsorbent polymers (SAP) in fresh Portland cement-based pastes visualized and quantified by neutron radiography and correlated to the progress of cement hydration. Cem Concr Res 75:24–34CrossRefGoogle Scholar
  6. 6.
    Jensen O M (2008) Use of superabsorbent polymers in construction materials. In: 1st international conference on microstructure related durability of cementitious composites, Nanjing (PR China), 13–15 Oct 2008. RILEM Publications S.A.R.L., Bagneux (France), pp 757–764Google Scholar
  7. 7.
    Wyrzykowski M, Lura P (2013) Controlling the coefficient of thermal expansion of cementitious materials—a new application for superabsorbent polymers. Cement Concr Compos 35:49–58CrossRefGoogle Scholar
  8. 8.
    Lura P, Terrasi GP (2014) 0 Reduction of fire spalling in high-performance concrete by means of superabsorbent polymers and polypropylene fibers—small scale fire tests of carbon fiber reinforced plastic-prestressed self-compacting concrete. Cement Concr Compos 49:36–42CrossRefGoogle Scholar
  9. 9.
    Snoeck D, Steuperaert S, Van Tittelboom K, Dubruel P, De Belie N (2012) Visualization of water penetration in cementitious materials with superabsorbent polymers by means of neutron radiography. Cem Concr Res 42:1113–1121CrossRefGoogle Scholar
  10. 10.
    Snoeck D, Van Tittelboom K, Steuperaert S, Dubruel P, De Belie N (2014) Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers. J Intel Mat Syst Str 2005:13–24CrossRefGoogle Scholar
  11. 11.
    Jensen OM, Hansen PF (2002) Water-entrained cement-based materials II. Experimental observations. Cem Concr Res 32:973–978CrossRefGoogle Scholar
  12. 12.
    Mönnig S, Lura P (2007) Superabsorbent polymers—an additive to increase freeze-thaw resistance of high strength concrete. In: Grosse CU (ed) Advances in construction materials 2007. Springer, Heidelberg, pp 351–358CrossRefGoogle Scholar
  13. 13.
    Laustsen S, Hasholt M T, Jensen O M (2008) A new technology for air entrainment of concrete. In: 1st international conference on microstructure related durability of cementitious composites, Nanjing (PR China), 13–15 October 2008. RILEM Publications S.A.R.L., Bagneux (France), pp 1223–1230Google Scholar
  14. 14.
    Brüdern A-E, Mechtcherine V (2010) Multifunctional use of SAP in strain-hardening cement-based composites. In: International RILEM conference on use of superabsorbent polymers and other new additives in concrete, Technical University of Denmark, Lyngby, RILEM Proceedings PRO 74, pp 11–22Google Scholar
  15. 15.
    Laustsen S, Hasholt MT, Jensen OM (2015) Void structure of concrete with superabsorbent polymers and its relation to frost resistance of concrete. Mater Struct 48(1–2):357–368CrossRefGoogle Scholar
  16. 16.
    Schröfl C, Mechtcherine V, Gorges M (2012) Relation between the molecular structure and the efficiency of superabsorbent polymers (SAP) as concrete admixtures to mitigate autogenous shrinkage. Cem Concr Res 42(6):865–873CrossRefGoogle Scholar
  17. 17.
    Mechtcherine V, Gorges M, Schröfl C, Assmann A, Brameshuber W, Bettencourt Ribeiro A, Cusson D, Custodio J, Fonseca da Silva E, Ichimiya K, Igarashi S-I, Klemm A, Kovler K, de Mendonca Lopes AN, Lura P, Tuan Nguyen V, Reinhardt H-W, Toledo Filho R D, Weiss J, Wyrzykowski M, Ye G, Zhutovsky S (2014) Effect of internal curing by using superabsorbent polymers (SAP) on autogenous shrinkage and other properties of a high-performance fine-grained concrete: results of a RILEM round-robin test. Mater Struct 47(3):541–562CrossRefGoogle Scholar
  18. 18.
    DIN EN 197-1:11/2011. Cement—part 1: Composition, specifications and conformity criteria for common cements. German versionGoogle Scholar
  19. 19.
    ASTM C618-12a. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concreteGoogle Scholar
  20. 20.
    DIN 1045-2:08/2008. Concrete, reinforced and prestressed concrete structures—Part 2: Concrete—Specification, properties, production and conformity—Application rules for DIN EN 206-1. German versionGoogle Scholar
  21. 21.
    EN 12350-5:08/2009. Testing fresh concrete—Part 5: Flow table testGoogle Scholar
  22. 22.
    Jones W A, Weiss W J (2014) Freeze thaw durability of internally cured concrete made using superabsorbent polymers. 4th International conference on the durability of concrete structures, Purdue University, West Lafayette (IN/USA), 2014, pp 3–11Google Scholar
  23. 23.
    SIA 262/1:2003. Eingetragene Norm der Schweizerischen Normen-Vereinigung: Betonbau—Ergänzende Festlegungen, Anhang C: Frost-Tausalzwiderstand. German versionGoogle Scholar
  24. 24.
    CEN/TS 12390-9:09/2006. Testing hardened concrete—Part 9: Freeze-thaw resistance—ScalingGoogle Scholar
  25. 25.
    ASTM C666-03 (2008) Standard test method for resistance of concrete to rapid freezing and thawingGoogle Scholar
  26. 26.
    Setzer MJ, Fagerlund G, Janssen DJ (1996) CDF Test—test method for the freeze-thaw resistance of concrete—tests with sodium chloride solution (CDF). Mater Struct 29:523–528CrossRefGoogle Scholar
  27. 27.
    ASTM C672-12. Standard test method for scaling resistance of concrete surfaces exposed to deicing chemicalsGoogle Scholar
  28. 28.
    JIS A 1148:2010. Method of test for resistance of concrete to freezing and thawingGoogle Scholar
  29. 29.
    GOST 10060.0-95. Concretes: Methods for the determination of frost-resistance. General requirementsGoogle Scholar
  30. 30.
    GOST 10060.1-95. Concretes: Basic method for the determination of frost-resistanceGoogle Scholar
  31. 31.
    GOST 10060.2-95. Concretes: Rapid method for the determination of frost-resistance by repeated alternated freezing and thawingGoogle Scholar
  32. 32.
    GOST 26134-84. Concrete: Ultrasonic method for determining cold resistanceGoogle Scholar
  33. 33.
    Justs J, Wyrzykowski M, Bajare D, Lura P (2015) Internal curing by superabsorbent polymers in ultra-high performance concrete. Cem Concr Res 76:82–90CrossRefGoogle Scholar
  34. 34.
    EN 12350-6:03/2011. Testing fresh concrete—Part 6: DensityGoogle Scholar
  35. 35.
    EN 12350-7:08/2009. Testing fresh concrete—Part 7: Air content—Pressure methodsGoogle Scholar
  36. 36.
    ASTM C143-12. Standard test method for slump of hydraulic concreteGoogle Scholar
  37. 37.
    ASTM C138-14. Standard test method for density (unit weight), yield, and air content (gravimetric) of concreteGoogle Scholar
  38. 38.
    ASTM C143-04. Standard test method for slump of hydraulic concreteGoogle Scholar
  39. 39.
    ASTM C231-10. Standard test method for air content of freshly mixed concrete by the pressure methodGoogle Scholar
  40. 40.
    JIS A 1101:2005. Method of test for slump of concreteGoogle Scholar
  41. 41.
    JIS A 1116:2005. Method of test for fresh concrete unit volume weight and of air mass (mass method)Google Scholar
  42. 42.
    JIS A 1128:2005. Method of test for air content of fresh concrete by pressure methodGoogle Scholar
  43. 43.
    JIS A 1150:2007. Method of test for slump flow of concreteGoogle Scholar
  44. 44.
    EN 12390-3:07/2009. Testing hardened concrete—Part 3: Compressive strength of test specimensGoogle Scholar
  45. 45.
    ASTM C39-14a. Standard test method for compressive strength of cylindrical specimensGoogle Scholar
  46. 46.
    ASTM C469-14. Standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compressionGoogle Scholar
  47. 47.
    ASTM C496-11. Standard test method for splitting tensile strength of cylindrical concrete specimensGoogle Scholar
  48. 48.
    EN 12390-6:09/2010. Testing hardened concrete—Part 6: Tensile splitting strength of test specimensGoogle Scholar
  49. 49.
    DIN 1048-5:06/1991. Testing concrete; testing of hardened concrete (specimens prepared in mould). German versionGoogle Scholar
  50. 50.
    ASTM C469-10. Standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compressionGoogle Scholar
  51. 51.
    JIS A 1108:2006. Method of test for compressive strength of concreteGoogle Scholar
  52. 52.
    JIS A 1113:2006. Method of test for splitting tensile strength of concreteGoogle Scholar
  53. 53.
    JIS A 1149:2010. Method of test for static modulus of elasticity of concreteGoogle Scholar
  54. 54.
    DIN EN 12390-13:06/2014. Testing hardened concrete—Part 13: Determination of secant modulus of elasticity in compression; German version EN 12390-13:2013Google Scholar

Copyright information

© RILEM 2016

Authors and Affiliations

  • Viktor Mechtcherine
    • 1
  • Christof Schröfl
    • 1
  • Mateusz Wyrzykowski
    • 2
  • Michaela Gorges
    • 1
  • Pietro Lura
    • 2
    • 3
  • Daniel Cusson
    • 4
  • Jim Margeson
    • 4
  • Nele De Belie
    • 5
  • Didier Snoeck
    • 5
  • Kazuo Ichimiya
    • 6
  • Shin-Ichi Igarashi
    • 7
  • Vyacheslav Falikman
    • 8
  • Stefan Friedrich
    • 9
  • Jürgen Bokern
    • 9
  • Patricia Kara
    • 10
  • Alicja Marciniak
    • 11
  • Hans-Wolf Reinhardt
    • 12
  • Sören Sippel
    • 12
  • António Bettencourt Ribeiro
    • 13
  • João Custódio
    • 13
  • Guang Ye
    • 14
  • Hua Dong
    • 14
  • Jason Weiss
    • 15
  1. 1.Institute of Construction MaterialsTechnische Universität DresdenDresdenGermany
  2. 2.Swiss Federal Laboratories for Materials Science and TechnologyEmpaDübendorfSwitzerland
  3. 3.Institute for Building MaterialsETH ZurichZurichSwitzerland
  4. 4.National Research Council CanadaOttawaCanada
  5. 5.Magnel Laboratory for Concrete ResearchGhent UniversityGhentBelgium
  6. 6.Department of Civil & Environmental EngineeringOita National College of TechnologyOitaJapan
  7. 7.Institute of Science and EngineeringKanazawa UniversityKanazawaJapan
  8. 8.Moscow State University of Civil EngineeringMoscowRussia
  9. 9.BASF Construction Solutions GmbHTrostbergGermany
  10. 10.Institute of Materials and StructuresRiga Technical UniversityRigaLatvia
  11. 11.Department of Building Physics and Building MaterialsLodz University of TechnologyLodzPoland
  12. 12.Department of Construction MaterialsUniversity of StuttgartStuttgartGermany
  13. 13.Concrete and Cement Testing Laboratory (LabTech)National Laboratory for Civil Engineering (LNEC)LisbonPortugal
  14. 14.Department of Materials & EnvironmentDelft University of TechnologyDelftNetherlands
  15. 15.Civil Engineering MaterialsPurdue UniversityWest LafayetteUSA

Personalised recommendations