Advertisement

Materials and Structures

, Volume 49, Issue 10, pp 4363–4373 | Cite as

Estimation of resilient modulus of unbound granular materials used as pavement base: combined effect of grain-size distribution and aggregate source frictional properties

  • Jean-Pascal Bilodeau
  • Claudiane Ouellet Plamondon
  • Guy Doré
Original Article

Abstract

The resilient modulus of granular materials used in base layers is influenced by numerous factors, such as grain-size distribution and aggregate source properties. Resilient modulus tests were performed on three aggregate sources for five identical gradations in order to study their respective effects on the mechanical response of granular materials. To consider these effects, two new parameters associated with frictional properties and gradation are introduced. For the proposed model, standard grain-size distribution and flow tests are needed to estimate of the resilient modulus of granular materials.

Keywords

Resilient modulus Unbound granular materials Pavement granular base Grain-size distribution Flow index 

Notes

Acknowledgments

The authors are grateful to the Quebec Ministry of Transportation for the financial and technical support received from their crew. The authors also wish to thank the Fond Québécois de la Recherche sur la Nature et les Technologies (FQRNT) for the partial funding of this project.

References

  1. 1.
    Barksdale RD (1991) The aggregate handbook. National Stone Association, Washington D.C.Google Scholar
  2. 2.
    Bilodeau J-P, Doré G, Depatie J (2013) Mitigation of permanent deformation of base layer containing recycled asphalt aggregates. Can J Civ Eng 40(2):181–187CrossRefGoogle Scholar
  3. 3.
    Bilodeau J-P (2009) Optimisation de la granulométrie des matériaux granulaires de fondations des chaussées. Ph.D. dissertation, Laval University, QuébecGoogle Scholar
  4. 4.
    Doré G, Zubeck H (2008) Cold regions pavement engineering. McGraw-Hill, New YorkGoogle Scholar
  5. 5.
    Kim D, Kim JR (2007) Resilient behavior of compacted subgrade soils under the repeated triaxial test. Constr Build Mater 21:1470–1479CrossRefGoogle Scholar
  6. 6.
    Lekarp F, Isacsson U, Dawson A (2000) State on the Art. I: resilient response of unbound aggregates. J Transp Eng 126(1):66–75CrossRefGoogle Scholar
  7. 7.
    Uthus L (2007) Deformation properties of unbound granular materials. PhD Dissertation, University of Trondheim, TrondheimGoogle Scholar
  8. 8.
    BNQ (2002) Granulats—Travaux de génie civil. Bureau de normalisation du Québec (Québec, Que.), BNQ 2560-114Google Scholar
  9. 9.
    Fuller WB, Thompson SE (1907) The laws of proportioning concrete. Trans ASCE ASCE 59:67–143Google Scholar
  10. 10.
    Boudali M (1997) Module réversible des graves non traitées des fondations routières du Québec. Ministère des Transports du Québec, QuébecGoogle Scholar
  11. 11.
    Bilodeau J-P, Doré G, Pierre P (2010) Optimisation de la granulométrie des matériaux granulaires de fondation des chaussées. Revue Canadienne de Génie Civil 37:1350–1361CrossRefGoogle Scholar
  12. 12.
    Dawson A (2001) Granular pavement layer materials…Where are we?. ARRB Workshop, MelbourneGoogle Scholar
  13. 13.
    Doucet F, Doré G (2004) Module réversible et coefficient de poisson réversible des matériaux granulaires C-LTPP. In: Proceedings of the 57th Canadian Geotechnical and 5th Joint IAH-CNC and CGS groundwater specialty conferences CD-Rom, QuébecGoogle Scholar
  14. 14.
    Zaman M, Chen D-H, Laguros JG (1994) Resilient moduli of granular materials. J Transp Eng 120(6):967–988CrossRefGoogle Scholar
  15. 15.
    Barksdale RD, Alba J, Khosla NP, Lambe PC, Rahman MS (1997) Laboratory determination of resilient modulus for flexible pavement design. NCHRP Web Doc 14 (project 1–28), WashingtonGoogle Scholar
  16. 16.
    Xu Q, Ruiz JM, Moravec M, Rasmussen R (2013) Simulation of unbound material resilient modulus effects on mechanistic-empirical pavement design. Mater Struct 46:1089–1100CrossRefGoogle Scholar
  17. 17.
    Barksdale R, Itani S (1989) Influence of aggregate shape on base behavior. Transp Res Rec 1227:173–181Google Scholar
  18. 18.
    Bilodeau J-P, Doré G (2012) Relating resilient behaviour of compacted unbound base granular materials to matrix and interlock characteristics. Constr Build Mater 37:220–228CrossRefGoogle Scholar
  19. 19.
    Chik Z (2004) Effect of fragmentation on the engineering properties of granular materials: laboratory and fractal analyses. Ph.D. dissertation, University of Pittsburg, PennsylvaniaGoogle Scholar
  20. 20.
    Pan T, Tutumluer E, Anochie-Boateng J (2006) Aggregate morphology affecting resilient response of unbound granular materials. In: 85th Annual meeting of Transportation Research Board, Washington D.C.Google Scholar
  21. 21.
    Thom NH, Brown SF (1988) The effect of grading and density on the mechanical properties of a crushed dolomitic limestone. In: Proceedings of the 14th Australian Road Research Board, Volume 14, Part. 7, pp 94–100Google Scholar
  22. 22.
    Thom NH, Brown SF (1989) The mechanical properties of unbound aggregates from various sources. In: R-H Jones, AR Dawson (eds) proceedings of the 3rd symposium on unbound aggregates in roads (UNBAR4), University of Nottingham, Butterwoths, pp 130–142Google Scholar
  23. 23.
    Masad E, Al-Rousan T, Button J, Little D, Tutumluer E (2007) Test methods for characterizing aggregate shape, texture, and angularity. NCHRP Report 555, Transportation Research Board of the National AcademyGoogle Scholar
  24. 24.
    Pan T, Tutumluer E (2005) Imaging based evaluation of coarse aggregate size and shape properties affecting pavement performance. In: CW Schwartz, E Tutumluer, L Tashman (eds) ASCE Geotechnical Special Publication No. 130, Advances in Pavement EngineeringGoogle Scholar
  25. 25.
    Janoo VC (1998) Quantification of shape, angularity, and surface texture of base course materials. Special Report 98-1, U.S. Army Cold Regions Research and Engineering Laboratory, HanoverGoogle Scholar
  26. 26.
    Ministère des Transports du Québec (2004) Granulats—Détermination de la densité et de l’absorption d’un granulat fin (LC 21–065). Procédure du laboratoire des chaussées, Ministère des Transports du Québec, QuébecGoogle Scholar
  27. 27.
    AFNOR (1990) Norme NF P 18-563—Granulats Détermination du coefficient d’écoulement des gravillonsGoogle Scholar
  28. 28.
    Garnier J, Robert J (1979) Détermination de l’angularité des gravillons et des sables. Bull Lab Ponts et Chaussées 104:67–76Google Scholar
  29. 29.
    Bilodeau J-P, Doré G (2012) Resilient modulus water sensitivity of compacted unbound granular materials used as pavement base. Int J Pavement Eng 13(5):459–471CrossRefGoogle Scholar
  30. 30.
    Ministère des Transports du Québec (2004) Détermination du module réversible et du coefficient de poisson réversible des matériaux granulaires à l’aide d’une cellule triaxiale à chargement déviatorique répété (LC-22-400). Procédure de laboratoire, Ministère des Transports du Québec, QuébecGoogle Scholar
  31. 31.
    American Association for State Highway and Transportation Officials (2003) Determining the resilient modulus of soils and aggregate materials. In: American Association for State Highway and Transportation Officials (ed) Standard specifications for transportation materials and methods of sampling and testing, 20th edn. AASHTO, Washington, D.C.Google Scholar
  32. 32.
    AFNOR (2005) Mélanges avec ou sans liant hydraulique Partie 7: Essai triaxial sous charge cyclique pour mélanges sans liant hydraulique (NF EN 13286-7). Procédure de laboratoire de l’Association Française de Normalisation, FranceGoogle Scholar
  33. 33.
    Mellizo CA (2010) Estimation du module réversible des matériaux granulaires de chaussées. Master thesis, Laval University, Québec, CanadaGoogle Scholar
  34. 34.
    Asphalt Institute (1991) Thickness design-asphalt pavements for highways and streets. Ninth edition. Asphalt Institute, New York Manual Series No. 1 (MS-1) Google Scholar
  35. 35.
    Witczak MW, Andrei D, Houston WN (2000) Development of the 2002 guide for the design of new and rehabilitated pavement structures. Inter Team Technical Report (Seasonal 1), resilient modulus as function of soil moisture—summary of predictive models, College of Engineering and Applied Sciences, Department of Civil and Environmental Engineering, Arizona State UniversityGoogle Scholar
  36. 36.
    CAN/BNQ (1986) Sols—Détermination de la relation teneur en eau—masse volumique—essai proctor modifié, Canadian Standards Association (Ottawa, Ont.) and Bureau de normalisation du Québec (Québec, Que.). CAN/BNQ 2501-255Google Scholar
  37. 37.
    BNQ (1974) Granulats—Détermination du nombre pétrographique sur le gros granulat. Bureau de normalisation du Québec (Québec, Que.), BNQ 2560-900Google Scholar
  38. 38.
    Ministère des Transports du Québec (2002) Granulats—Détermination du pourcentage d’usure par attrition du gros granulat au moyen de l’appareil Micro-Deval (LC 21–070). Procédure du laboratoire des chaussées, Ministère des Transports du Québec, QuébecGoogle Scholar
  39. 39.
    Ministère des Transports du Québec (2001) Granulats—Détermination de la résistance à l’abrasion au moyen de l’appareil Los Angeles (LC 21–400). Procédure du laboratoire des chaussées, Ministère des Transports du Québec, QuébecGoogle Scholar
  40. 40.
    Ministère des Transports du Québec (2002) Granulats—Détermination du pourcentage de particules fracturées du gros granulat (LC 21–100). Procédure du laboratoire des chaussées, Ministère des Transports du Québec, QuébecGoogle Scholar
  41. 41.
    Ministère des Transports du Québec (2003) Granulats—Détermination du pourcentage de particules«plates»et de particules«allongées»(LC 21–265). Procédure du laboratoire des chaussées, Ministère des Transports du Québec, QuébecGoogle Scholar
  42. 42.
    Ministère des Transports du Québec (2005) Granulats—Détermination du coefficient d’écoulement du granulat fin (LC 21–075). Procédure du laboratoire des chaussées, Ministère des Transports du Québec, QuébecGoogle Scholar
  43. 43.
    Ministère des Transports du Québec (2007) Granulats—Détermination de la densité et de l’absorption du gros granulat (LC 21–067). Procédure du laboratoire des chaussées, Ministère des Transports du Québec, QuébecGoogle Scholar

Copyright information

© RILEM 2016

Authors and Affiliations

  • Jean-Pascal Bilodeau
    • 1
  • Claudiane Ouellet Plamondon
    • 2
  • Guy Doré
    • 1
  1. 1.Department of Civil and Water EngineeringLaval UniversityQuebecCanada
  2. 2.Department of Construction EngineeringÉcole de Technologies SupérieuresMontrealCanada

Personalised recommendations