Materials and Structures

, Volume 49, Issue 10, pp 4069–4084 | Cite as

Rapid method for measuring the water absorption of recycled aggregates

  • Bruno L. DamineliEmail author
  • Marco QuattroneEmail author
  • Sérgio C. Angulo
  • Maria Elena S. Taqueda
  • Vanderley M. John
Original Article


The quality control of aggregates for concrete involves determining their water absorption and apparent density, indicators of the material’s porosity. The standard methods were developed for natural aggregates and are less appropriate for construction and demolition waste recycled aggregates (RAs), which have greater porosity and variability. This paper presents a rapid and accurate method to measure water absorption of RAs, combining 0.5 h vacuum saturation with ~2 h microwave oven drying kinetics. The new method anticipates the results by 43.5 h in comparison of standard ASTM C127, making it appealing for quality control operations. Statistical analysis shows new method gives statistically equivalent results for porous recycled aggregates but it over estimates low porosity natural aggregates. Results of the proposed method are different less than 0.5 % of those obtained by standard methods when testing three RAs with absorptions varying between 5 and 19 %. Operator did not influence the results of the new method. Details of the new experimental procedure and equipment developed are given. Suggestions for further improvement of the new method presented.


Construction and demolition waste (CDW) Recycled aggregates Water absorption Density Quality control Concrete 



Bruno Damineli’s work is supported by FAPESP (grant 2013/03688-3). Marco Quattrone’s work is supported by FAPESP (grant 2012/15195-9). Sergio Angulo’s work is supported by FAPESP (grant 2012/25496-6). The information and views set out in this study are those of the authors and do not necessarily reflect the opinion of FAPESP.


  1. 1.
    Tam CM, Tam VWY, Wang K (2007) Ways to facilitate the use of recycled aggregate concrete. Proc ICE Waste Resour Manag 160:125–129. doi: 10.1680/warm.2007.160.3.125 CrossRefGoogle Scholar
  2. 2.
    Wu Z, Yu ATW, Shen L, Liu G (2014) Quantifying construction and demolition waste: an analytical review. Waste Manag 34:1683–1692. doi: 10.1016/j.wasman.2014.05.010 CrossRefGoogle Scholar
  3. 3.
    Agrela F, Sánchez de Juan M, Ayuso J et al (2011) Limiting properties in the characterisation of mixed recycled aggregates for use in the manufacture of concrete. Constr Build Mater 25:3950–3955. doi: 10.1016/j.conbuildmat.2011.04.027 CrossRefGoogle Scholar
  4. 4.
    Angulo SC, Carrijo PM, Figueiredo AD et al (2010) On the classification of mixed construction and demolition waste aggregate by porosity and its impact on the mechanical performance of concrete. Mater Struct 43:519–528. doi: 10.1617/s11527-009-9508-9 CrossRefGoogle Scholar
  5. 5.
    Behera M, Bhattacharyya SK, Minocha AK et al (2014) Recycled aggregate from C&D waste and its use in concrete—a breakthrough towards sustainability in construction sector: a review. Constr Build Mater 68:501–516. doi: 10.1016/j.conbuildmat.2014.07.003 CrossRefGoogle Scholar
  6. 6.
    Vázquez E (2013) Construction and demolition waste recycling in a broader environmental perspective. In: Vázquez E (ed) Progress of recycling in the built environment. Springer, Dordrecht, pp 5–35CrossRefGoogle Scholar
  7. 7.
    Soutsos MN, Tang K, Millard SG (2011) Concrete building blocks made with recycled demolition aggregate. Constr Build Mater 25:726–735. doi: 10.1016/j.conbuildmat.2010.07.014 CrossRefGoogle Scholar
  8. 8.
    Edwards JP, Wint J, Ghazireh N, Cearns P (2007) WAS005-002: Final Report - Recycled and stabilised materials in trench reinstatement. Waste & Resources Action Programme, 33 pGoogle Scholar
  9. 9.
    Arulrajah A, Piratheepan J, Disfani M, Bo M (2013) Geotechnical and geoenvironmental properties of recycled construction and demolition materials in pavement subbase applications. J Mater Civ Eng 25:1077–1088. doi: 10.1061/(ASCE)MT.1943-5533.0000652 CrossRefGoogle Scholar
  10. 10.
    de Juan MS, Gutiérrez PA (2009) Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Constr Build Mater 23:872–877. doi: 10.1016/j.conbuildmat.2008.04.012 CrossRefGoogle Scholar
  11. 11.
    Medina C, Sánchez de Rojas MI, Frías M (2013) Properties of recycled ceramic aggregate concretes: water resistance. Cem Concr Compos 40:21–29. doi: 10.1016/j.cemconcomp.2013.04.005 CrossRefGoogle Scholar
  12. 12.
    Pacheco-Torgal F, Jalali S (2010) Reusing ceramic wastes in concrete. Constr Build Mater 24:832–838. doi: 10.1016/j.conbuildmat.2009.10.023 CrossRefGoogle Scholar
  13. 13.
    Belin P, Habert G, Thiery M, Roussel N (2014) Cement paste content and water absorption of recycled concrete coarse aggregates. Mater Struct. doi: 10.1617/s11527-013-0128-z Google Scholar
  14. 14.
    Butler L, West JS, Tighe SL (2011) The effect of recycled concrete aggregate properties on the bond strength between RCA concrete and steel reinforcement. Cem Concr Res 41:1037–1049. doi: 10.1016/j.cemconres.2011.06.004 CrossRefGoogle Scholar
  15. 15.
    Hoffmann C, Schubert S, Leemann A, Motavalli M (2012) Recycled concrete and mixed rubble as aggregates: influence of variations in composition on the concrete properties and their use as structural material. Constr Build Mater 35:701–709. doi: 10.1016/j.conbuildmat.2011.10.007 CrossRefGoogle Scholar
  16. 16.
    Quattrone M, Angulo SC, Damineli BL, John VM (2014) Influence of recycled aggregate in binder intensity of concretes. In: Concrete Innovation Conference - CIC2014, At Oslo, NorwayGoogle Scholar
  17. 17.
    Duan ZH, Poon CS (2014) Properties of recycled aggregate concrete made with recycled aggregates with different amounts of old adhered mortars. Mater Des 58:19–29. doi: 10.1016/j.matdes.2014.01.044 CrossRefGoogle Scholar
  18. 18.
    Kou S-C, Poon C-S, Wan H-W (2012) Properties of concrete prepared with low-grade recycled aggregates. Constr Build Mater 36:881–889. doi: 10.1016/j.conbuildmat.2012.06.060 CrossRefGoogle Scholar
  19. 19.
    Hendriks CF (2004) A new vision on the building cycle. Uitgeverij Æneas BVGoogle Scholar
  20. 20.
    Ogawa H, Nawa T (2012) Improving the quality of recycled fine aggregate by selective removal of brittle defects. J Adv Concr Technol 10:395–410. doi: 10.3151/jact.10.395 CrossRefGoogle Scholar
  21. 21.
    Alaejos P, de Juan MS, Rueda J et al (2013) Quality Assurance of recycled aggregates. In: Vázquez E (ed) Progress of recycling in the built environment. Springer, Dordrecht, pp 229–273CrossRefGoogle Scholar
  22. 22.
    Recommendation of RILEM (1994) Specifications for concrete with recycled aggregates. Mater Struct 27:557–559. doi: 10.1007/BF02473217 CrossRefGoogle Scholar
  23. 23.
    C09 Committee (2012) ASTM C127:2012 - Test method for density, relative density (specific gravity), and absorption of coarse aggregate. ASTM InternationalGoogle Scholar
  24. 24.
    ABNT/CB-018 (2009) ABNT NBR NM 53:2009 Coarse aggregate—determination of the bulk specific gravity, apparent specific gravity and water absorptionGoogle Scholar
  25. 25.
    CEN TC B/502/6 (2013) EN 1097-6:2013 Tests for mechanical and physical properties of aggregates. Determination of particle density and water absorptionGoogle Scholar
  26. 26.
    Djerbi Tegguer A (2012) Determining the water absorption of recycled aggregates utilizing hydrostatic weighing approach. Constr Build Mater 27:112–116. doi: 10.1016/j.conbuildmat.2011.08.018 CrossRefGoogle Scholar
  27. 27.
    Safiuddin M, Mahmud HB, Jumaat MZ (2011) Efficacy of ASTM saturation techniques for measuring the water absorption of concrete. Arab J Sci Eng 36:761–768. doi: 10.1007/s13369-011-0080-6 CrossRefGoogle Scholar
  28. 28.
    Schouenborg B, Aurstad J, Pétursson P (2004) Test methods adapted to alternative aggregates. In: Vázquez E, Hendriks ChF, Janssen GMT (eds) International RILEM conference on the use of recycled materials in buildings and structures, Barcelona, p 1154Google Scholar
  29. 29.
    Tam VWY, Gao XF, Tam CM, Chan CH (2008) New approach in measuring water absorption of recycled aggregates. Constr Build Mater 22:364–369. doi: 10.1016/j.conbuildmat.2006.08.009 CrossRefGoogle Scholar
  30. 30.
    Zaharieva R, Buyle-Bodin F, Skoczylas F, Wirquin E (2003) Assessment of the surface permeation properties of recycled aggregate concrete. Cem Concr Compos 25:223–232. doi: 10.1016/S0958-9465(02)00010-0 CrossRefGoogle Scholar
  31. 31.
    C09 Committee (2007) ASTM C 128 test method for density, relative density (specific gravity), and absorption of fine aggregate. ASTM International, West ConshohockenGoogle Scholar
  32. 32.
    You Z, Mills-Beale J, Williams RC, Dai Q (2009) Development of new test procedures for determining the specific gravity and absorption of fine and coarse aggregates. Michigan Department of Transportation Construction Paving UnitGoogle Scholar
  33. 33.
    Mills-Beale J, You Z, Williams RC, Dai Q (2009) Determining the specific gravities of coarse aggregates utilizing vacuum saturation approach. Constr Build Mater 23:1316–1322. doi: 10.1016/j.conbuildmat.2008.07.025 CrossRefGoogle Scholar
  34. 34.
    D04 Committee (2009) ASTM D7370—test method for determination of relative density and absorption of fine, coarse and blended aggregate using combined vacuum saturation and rapid submersion. ASTM International, West ConshohockenGoogle Scholar
  35. 35.
    Kropp J (2005) Bestimmung der Kernfeuchte wassergesättigter: Bauschuttrezyklate anhand des Trocknungsverhaltens. In: Amtliche Mater. Bremen, Germany, 12 pGoogle Scholar
  36. 36.
    Mechling J-M, Lecomte A, Merriaux K (2003) Mesure de l’absorption d’eau des additions minérales des bétons par évaporométrie. Mater Struct 36:32–39. doi: 10.1007/BF02481568 CrossRefGoogle Scholar
  37. 37.
    Miller A, Spragg R, Antico F et al (2014) Determining the moisture content of pre-wetted lightweight aggregate: assessing the variability of the paper towel and centrifuge methods. Int. Conf. Durab. Concr, StructGoogle Scholar
  38. 38.
    Miller AE, Barrett TJ, Zander AR, Weiss WJ (2014) Using a centrifuge to determine moisture properties of lightweight fine aggregate for use in internal curing. Adv Civ Eng Mater 3:20130111. doi: 10.1520/ACEM20130111 CrossRefGoogle Scholar
  39. 39.
    Kandhal P, Mallick R, Huner M (2000) Measuring bulk-specific gravity of fine aggregates: development of new test method. Transp Res Rec J Transp Res Board 1721:81–90. doi: 10.3141/1721-10 CrossRefGoogle Scholar
  40. 40.
    Gentilini P, Yazoghli-Marzouk O, Delmotte V, Descantes Y (2015) Determination of the water content of fillerised fine aggregates in the saturated surface dry state. Constr Build Mater 98:662–670. doi: 10.1016/j.conbuildmat.2015.08.131 CrossRefGoogle Scholar
  41. 41.
    C09 Committee (2013) ASTM C566—test method for total evaporable moisture content of aggregate by drying. ASTM International, West ConshohockenGoogle Scholar
  42. 42.
    MAIN ROADS Western Australia (2012) TEST METHOD WA 212.2–2012 Determination of the moisture content of aggregate - Microwave Oven Drying Method (Subsidiary Method)Google Scholar
  43. 43.
    McCabe W, Smith J, Harriott P (2004) Unit operations of chemical engineering, 7th edn. McGraw-Hill Science/Engineering/Math, BostonGoogle Scholar
  44. 44.
    Moss AAH, Nonhebel G (1971) Drying of solids in the chemical industry. Butterworth & Co Publishers Ltd, LondonGoogle Scholar
  45. 45.
    Ceaglske NH, Hougen OA (1937) Drying granular solids. Ind Eng Chem 29:805–813. doi: 10.1021/ie50331a017 CrossRefGoogle Scholar
  46. 46.
    Box GEP (2009) Statistics for experimenters: design, innovation, and discovery, second edition + JMP version 6 software student edition, set. Wiley, New YorkGoogle Scholar
  47. 47.
    World Health Organization (2014) Electromagnetic fields & public health: Microwave ovens. In: WHO. Accessed 18 Sep 2014
  48. 48.
    Alarcon-Ruiz L, Platret G, Massieu E, Ehrlacher A (2005) The use of thermal analysis in assessing the effect of temperature on a cement paste. Cem Concr Res 35:609–613. doi: 10.1016/j.cemconres.2004.06.015 CrossRefGoogle Scholar
  49. 49.
    Arce GR (2005) Median and weighted median smoothers. In: Arce GR (ed) Nonlinear signal process. Wiley, Hoboken, pp 80–138CrossRefGoogle Scholar
  50. 50.
    Webb PA (2001) Volume and density determinations for particle technologists. Accessed 19 Mar 2014
  51. 51.
    Webb PA (2001) An introduction to the physical characterization of materials by mercury intrusion porosimetry with emphasis on reduction and presentation of experimental data. Accessed 19 Mar 2014
  52. 52.
    Idris A, Khalid K, Omar W (2004) Drying of silica sludge using microwave heating. Appl Therm Eng 24:905–918. doi: 10.1016/j.applthermaleng.2003.10.001 CrossRefGoogle Scholar
  53. 53.
    Araszkiewicz M, Koziol A, Oskwarek A, Lupinski M (2004) Microwave drying of porous materials. Dry Technol 22:2331–2341. doi: 10.1081/DRT-200040014 CrossRefGoogle Scholar
  54. 54.
    Makul N, Rattanadecho P, Agrawal DK (2014) Applications of microwave energy in cement and concrete—a review. Renew Sustain Energy Rev 37:715–733. doi: 10.1016/j.rser.2014.05.054 CrossRefGoogle Scholar
  55. 55.
    Angulo S (2005) Caracterização de agregados de resíduos de construção e demolição reciclados e a influência de suas características no comportamento de concretos. Universidade de São Paulo, São PauloCrossRefGoogle Scholar
  56. 56.
    Damineli BL (2007) Estudo de métodos para caracterização de propriedades físicas de agregados graúdos de resíduos de construção e demolição reciclados. Universidade de São Paulo, São PauloCrossRefGoogle Scholar
  57. 57.
    Taylor HFW (1997) Cement chemistry. Thomas Telford, LondonCrossRefGoogle Scholar

Copyright information

© RILEM 2016

Authors and Affiliations

  • Bruno L. Damineli
    • 1
    Email author
  • Marco Quattrone
    • 1
    Email author
  • Sérgio C. Angulo
    • 1
  • Maria Elena S. Taqueda
    • 2
  • Vanderley M. John
    • 1
  1. 1.Department of Construction Engineering, Escola PolitécnicaUniversity of São PauloSão PauloBrazil
  2. 2.Department of Chemical Engineering, Escola PolitécnicaUniversity of São PauloSão PauloBrazil

Personalised recommendations