Materials and Structures

, Volume 49, Issue 7, pp 2893–2905 | Cite as

Static stability of trulli

  • Leonardo TodiscoEmail author
  • Giuseppe Sanitate
Original Article


Trulli are remarkable examples of corbelled masonry structures commonly located in Apulia, Italy. This paper focuses on their statics. Trulli domes transfer loads in paths that follows meridians and parallels: idealization of the dome as a system of independent arches is not admissible. The aim of this research is to present a simplified methodology for assessing their stability against vertical static loads and for classifying trulli in a database in order to identify those which are in the worst conditions. The goal is achieved by adopting a static index of stability (St. I.) that takes geometry into account. The methodology has been developed within the framework of the Apuliabase Project and it has been applied to the structural vulnerability evaluation of 30 case studies. The same philosophy can be extended to other structural typologies exhibiting similar structural behaviour.


Trulli Masonry Apulia Vulnerability Corbelled structures Dry stone structures Domes Apuliabase 



Apuliabase Project has been funded by Apulia Region Principi Attivi Call. The authors wish to thank Laura de Lorenzis, Philippe Block, Matthew De Jong and John Ochsendorf for their support and suggestions during the project. The authors also thank Giuseppe Lacorte for providing several photos of trulli and Landnet for the technical support provided for the surveying techniques. The author would like to thank Kam Tam and Andrew Chestnutt for improving the text.


  1. 1.
    Allen E (1984) Pietre di Puglia: dolmen, trulli e insediamenti rupestri. Adda, BariGoogle Scholar
  2. 2.
    Ambrosi A, Panella R, Radicchio G, Degano E (1997) Storia e destino dei trulli di Alberobello: prontuario per il restauro. Schena, Fasano di BrindisiGoogle Scholar
  3. 3.
    Apuliabase (2014) Database of the Apuliabase Project. In: Accessed December 03 2014
  4. 4.
    Asteris PG, Chronopoulos MP, Chrysostomou CZ, Varum H, Plevris V, Kyriakides N, Silva V (2014) Seismic vulnerability assessment of historical masonry structural systems. Eng Struct 62–63:118–134CrossRefGoogle Scholar
  5. 5.
    Benvenuto E, Corradi M (1987) La statica delle false volte. Architettura in pietra a secco. 93–106Google Scholar
  6. 6.
    Block P (2009) Thrust network analysis: exploring three-dimensional equilibrium. Massachusetts Institute of Technology, CambridgeGoogle Scholar
  7. 7.
    Cavanagh WG, Laxton RR (1981) The structural mechanics of the Mycenaean Tholos Tombs. Annu Brit Sch Athens 76:109–140CrossRefGoogle Scholar
  8. 8.
    Colas AS, Morel JC, Garnier D (2010) 2D modelling of a dry joint masonry wall retaining a pulverulent backfill. Int J Numer Anal Meth Geomech 34:1237–1249zbMATHGoogle Scholar
  9. 9.
    Colas AS, Garnier D, Morel JC (2013) Yield design modelling of dry joint retaining structures. Constr Build Mater 41:912–917CrossRefGoogle Scholar
  10. 10.
    Como M T (2005a) L’architettura delle tholoi micenee: analisi degli aspetti compositivi, costruttivi e statici. In: Doctoral dissertation, Università degli Studî Suor Orsola Benincasa, NapoliGoogle Scholar
  11. 11.
    Como M T (2005b) Aspetti costruttivi e statici delle tholoi micenee. In: Mochi G (eds), Edizioni Moderna, Proceedings of Teoria e Pratica del costruire: saperi, strumenti, modelli. Esperienze didattiche e di ricerca a confronto, Ravenna, October 27–29 2005, vol 4, pp 1433–1443Google Scholar
  12. 12.
    Como M T (2006) Analysis of the statics of Mycenaean Tholoi. In: Dunkeld M, Campbell J, Louw H, Tutton M, Addis B, Powell C, Thorne R (eds), Exeter, Proceedings of the second international congress on construction history, Cambridge, March 29–April 2 2006. 1:777–790Google Scholar
  13. 13.
    De Tommasi G, Monaco P, Vitone C (2003) A first approach to the load path method on masonry structure behaviour. In: Proceedings of eighth international conference on structural studies, repairs, and maintenance of heritage architecture, STREMAH VIII. Halkidiki, GreeceGoogle Scholar
  14. 14.
    Fábrega A (2003) Estudi mecanical de la flasa cupola. SCM Notícies 19:12–18Google Scholar
  15. 15.
    Fivet C, Zastavni D (2014) A fully geometric approach for interactive constraint-based structural equilibrium design. Comput Aided Design (CAD) 61:42–57CrossRefGoogle Scholar
  16. 16.
    Fivet C, Zastavni D (2013) Constraint-based graphic statics: new paradigms of computer-aided structural equilibrium design. J Int Assoc Shell Spatial Struct 54:271–280Google Scholar
  17. 17.
    Flügge W (1962) Stresses in shells. Springer, New YorkzbMATHGoogle Scholar
  18. 18.
    Heyman J (1995) The stone skeleton: structural engineering of masonry architecture. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  19. 19.
    Huerta S (2008) The analysis of masonry architecture: a historical approach. Archit Sci Rev 51:297CrossRefGoogle Scholar
  20. 20.
    Lau W, Ochsendorf J, Zessin J (2010) Equilibrium of cracked masonry domes. Proc ICE—Eng Comput Mech 163:135–145CrossRefGoogle Scholar
  21. 21.
    Lau W (2006) Equilibrium analysis of masonry domes. Dissertation, Massachusetts Institute of TechnologyGoogle Scholar
  22. 22.
    Löbbecke R (2012) Corbelled domes. Verlag der Buchhandlung Walther König, KölnGoogle Scholar
  23. 23.
    Lourenco PB, Oliveira DV, Roca P, Orduña A (2005) Dry joint stone masonry walls subjected to in-plane combined loading. J Struct Eng 131(11):1665–1673CrossRefGoogle Scholar
  24. 24.
    Lourenço PB, Milani G, Tralli A, Zucchini A (2007) Analysis of masonry structures: review of and recent trends in homogenization techniques. Can J Civ Eng 34:1443–1457CrossRefGoogle Scholar
  25. 25.
    McNeel R (2014a) Grasshopper generative modeling for Rhino. Computer software. Accessed June 05 2014
  26. 26.
    McNeel R (2014b) Rhinoceros NURBS modeling for Windows. Computer software. Accessed June 03 2014
  27. 27.
    Moramarco V (2013) I trulli di Alberobello. Lettura costruttiva e indagine statica. Fasi di luna, BariGoogle Scholar
  28. 28.
    Muttoni A (2011) The art of structures; introduction to the functioning of structures in architecture. EPFL Press/Routledge, Abingdon, Oxford, New YorkGoogle Scholar
  29. 29.
    Palmisano F (2013) Interpretation of the behaviour of masonry arches and domes by simple models. WIT Trans Built Environ 131:233–244CrossRefGoogle Scholar
  30. 30.
    Palmisano F (2014) Assessment of masonry arches and domes by simple models. Int J Struct Eng 5:63CrossRefGoogle Scholar
  31. 31.
    Piparo R (2003) Il trullo: risoluzione statica. Schena, Fasano (Brindisi)Google Scholar
  32. 32.
    Rovero L, Tonietti U (2012) Structural behaviour of earthen corbelled domes in the Aleppo’s region. Mater Struct 45:171–184CrossRefGoogle Scholar
  33. 33.
    Rovero L, Tonietti U (2014) A modified corbelling theory for domes with horizontal layers. Constr Build Mater 50:50–61CrossRefGoogle Scholar
  34. 34.
    Sanitate G, Todisco L, Monti G (2014) Effective assessment methodology for trulli in Apulia, Italy. In: Proceedings of 9th international masonry conference, GuimaresGoogle Scholar
  35. 35.
    Syrmakezis CA, Asteris PG (2001) Masonry failure criterion under biaxial stress state. J Mater Civ Eng 13:58–64CrossRefGoogle Scholar
  36. 36.
    Schlaich J, Schafer K, Jennewein M (1987) Toward a consistent design of structural concrete. J Prestress Concr Inst 32:74–150Google Scholar
  37. 37.
    Timoshenko S (1959) Theory of plates and shells. McGraw-Hill Book Company, New YorkzbMATHGoogle Scholar
  38. 38.
    Vernile R (1996) Los trulli. In: Proceedings of Primer Congreso Nacional de Historia de la Construcción, Madrid, 19–21 de septiembre de 1996Google Scholar

Copyright information

© RILEM 2015

Authors and Affiliations

  1. 1.School of Civil EngineeringTechnical University of MadridMadridSpain
  2. 2.ApuliabaseNoicattaroItaly

Personalised recommendations