Materials and Structures

, Volume 49, Issue 5, pp 1693–1703 | Cite as

Main considerations for the determination and evaluation of the acid resistance of cementitious materials

Original Article

Abstract

The paper reports on the development of an accelerated test method for determining and evaluating acid resistance of highly alkaline cementitious materials. The test method was derived through extensive laboratory experiments on hardened cement pastes, mortars and concretes, in order to determine the acid specific modes of action and to evaluate the related deterioration mechanisms for cementitious materials when subjected to acid attack. From the experimental study it can be concluded that the pH value of the acid solution is not the only decisive parameter. For example organic acids, such as acetic acid, cause a higher damaging effect compared to so-called “strong” acids (such as sulphuric or hydrochloric acid) because of the acid buffer action and the high solubility of the reaction products. In order to enable a constant deterioration rate the pH value during testing conditions has to be regulated at a stationary level, the degree of saturation in the acid solution needs to be regularly examined, and in particular for organic acids, the acid solution needs to be continuously stirred. The degree of degradation can be quantified by using visual methods or through measuring the residual mechanical properties, e.g. the compressive and/or flexural tensile strength. It should be noted that different damage mechanisms are possible, which are strongly dependent on the applied acid solution and constituents of the cementitious materials.

Keywords

Acid resistance Accelerated testing 3D-Micro X-ray computer tomography (3D-µXCT) Organic acids Inorganic acids 

References

  1. 1.
    Diepenseifen M, Hornung D, Schultz W (2008) Beton mit hohem Widerstand gegen Säureangriff. BetonW Int 6:48–56Google Scholar
  2. 2.
    Franke L, Schmidt H, Schmidt-Döhl F (2010) Prüfung der Beständigkeit von Mörtelprodukten gegenüber saurem Angriff bis pH3 und Einstufung in Expositionsklassen. Beton 1:20–31Google Scholar
  3. 3.
    Hüttl R, Hillemeier B (2000) High performance concrete—An example of acid resistance. Concr Plant Precast 66(1):52–60Google Scholar
  4. 4.
    König A, Rasch S, Neumann T, Dehn F (2010) Concrete for biogenic acid attack in agricultural constructions. Beton und Stahlbetonbau 105(11):714–724. doi: 10.1002/best.201000069 CrossRefGoogle Scholar
  5. 5.
    Lohaus L, Petersen L (2007) Hochleistungsbetone mit erhöhtem Säurewiderstand für den Kühlturmbau. Beton Inf 47(5+6):71–77Google Scholar
  6. 6.
    Neumann T, Lichtmann M, König R (2009) Säurewiderstandsfähige Betone und ihre Anwendung. Eine Alternative zu teuren Baustoffen und kostspieligen Betonbeschichtungen. BetonW Int (BWI) 3:74–78Google Scholar
  7. 7.
    Breit W (2004) Säurewiderstand von Beton—acid resistance of concrete. http://www.vdz-online.de. Accessed 25 August 2014
  8. 8.
    Alexander MG, Fourie C (2011) Performance of sewer pipe concrete mixtures with portland and calcium aluminate cements subject to mineral and biogenic acid attack. Mater Struct 44(1):313–330. doi: 10.1617/s11527-010-9629-1 CrossRefGoogle Scholar
  9. 9.
    Hüttl R, Lyhs P, Silbereisen R (2009) Beton auf Basis CEM II mit erhöhtem Widerstand gegenüber Säureangriff. IBAUSILGoogle Scholar
  10. 10.
    Fattuhi N, Hughes B (1988) The performance of cement paste and concrete subjected to sulphuric acid attack. Cem Concr Res 18:545–553. doi: 10.1016/0008-8846(88)90047-6 CrossRefGoogle Scholar
  11. 11.
    König A (2013) Biogener Säureangriff auf Betone im Biogasanlagenbau: Schädigungsmechanismen sowie Entwicklungspotentiale. Ph.D Thesis, Leipzig UniversityGoogle Scholar
  12. 12.
    Bertron A, Duchesne J, Escadeillas G (2005) Attack of cement pastes exposed to organic acids in manure. Cem Concr Compos 27(9/10):898–909. doi: 10.1016/j.cemconcomp.2005.06.003 CrossRefGoogle Scholar
  13. 13.
    Bertron A, Duchesne J, Escadeillas G (2007) Degradation of cement pastes by organic acids. Mater Struct 40(3):341–354. doi: 10.1617/s11527-006-9110-3 CrossRefGoogle Scholar
  14. 14.
    Bertron A, Escadeillas G, Duchesne J (2004) Cement pastes alteration by liquid manure organic acids: chemical and mineralogical characterization. Cem Concr Res 34(10):1823–1835. doi: 10.1016/j.cemconres.2004.01.002 CrossRefGoogle Scholar
  15. 15.
    Kiekbusch J (2007) Säureangriff auf zementgebundene Materialien. Ph.D Thesis, Hamburg University of TechnologyGoogle Scholar
  16. 16.
    MacÍas A, Goñi S, Madrid J (1999) Limitations of Köch-Steinegger test to evaluate the durability of cement pastes in acid medium. Cem Concr Res 29:2005–2009. doi: 10.1016/S0008-8846(99)00196-9 CrossRefGoogle Scholar
  17. 17.
    Pavlík V (1996) Corrosion of hardened cement paste by acetic and nitric acids Part III: influence of water/cement ratio. Cem Concr Res 26(3):475–490. doi: 10.1016/S0008-8846(96)85035-6 CrossRefGoogle Scholar
  18. 18.
    ASTMC267 (2006) Test methods for chemical resistance of mortars. Grouts Monolith Surf Polym ConcrGoogle Scholar
  19. 19.
    Dehn F, Friedemann K, Schmidt D (2003) Säureresistente Hochleistungsbetone. Optimierung der Mischung sowie Verifizierung der Eigenschaften. Beton Fert (BFT) Int 3:30–38Google Scholar
  20. 20.
    Fernando P, Said J (2011) Resistance to acid attack, abrasion and leaching behavior of alkali-activated mine waste binders. Mater Struct 44(2):487–498. doi: 10.1617/s11527-010-9643-3 CrossRefGoogle Scholar
  21. 21.
    Lanzón M, García-Ruiz PA (2010) Deterioration and damage evaluation of rendering mortars exposed to sulphuric acid. Mater Struct 43(3):417–427. doi: 10.1617/s11527-009-9500-4 CrossRefGoogle Scholar
  22. 22.
    Živica V, Bajza A (2002) Acidic attack of cement based materials—a review Part 2. Factors Rate Acidic Attack Prot Meas 6:215–222Google Scholar
  23. 23.
    Živica V (2004) Acidic attack of cement based materials: a review part 3: research and test methods. Concr Build Mater 18:683–688. doi: 10.1016/j.conbuildmat.2004.04.030 CrossRefGoogle Scholar
  24. 24.
    Roy D, Arjunan P, Silsbee M (2001) Effect of silica fume, metakaolin and low-calcium fly ash on chemical resistance of concrete. Cem Concr Res 31(12):1809–1813. doi: 10.1016/S0008-8846(01)00548-8 CrossRefGoogle Scholar
  25. 25.
    Gruyaert E, Van Den Heede P, Maes M, De Belie N (2012) Investigation of the influence of blast-furnace slag on the resistance of concrete against organic acid or sulphate attack by means of accelerated degradation tests. Cem Concr Res 42(1):173–185. doi: 10.1016/j.cemconres.2011.09.009 CrossRefGoogle Scholar
  26. 26.
    Hüttl R (2009) Schutzmaßnahmen für Rohrleitungen und Bauwerke Verhinderung von Korrosion. BetonW Int (BWI) 3:148–150Google Scholar
  27. 27.
    Paschmann H, Grube H, Thielen G (1995) Prüfverfahren und Untersuchungen zum Eindringen von Flüssigkeiten und Gasen in Beton sowie zum chemischen Widerstand von Beton. In: DAfStb-Heft 450, Berlin, GermanyGoogle Scholar
  28. 28.
    Monteny J, De Belie N, Vincke E, Taerwe L, Gemert DV, Verstraete W (2001) Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer-modified concrete. Cem Concr Res 31(9):1359–1365. doi: 10.1016/S0008-8846(00)00219-2 CrossRefGoogle Scholar
  29. 29.
    Sand W, Milde K, Bock E (1983) Simulation of concrete corrosion in a strictly controlled H2S-breeding chamber. Recent progress in biohydrometallurgy. In: Rossi G, Torma AE (eds) Recent progress in biohydrometallurgy, pp 667–677Google Scholar
  30. 30.
    Schmidt R (1999) Werkstoffverhalten in biologischen Systemen. Grundl Anwend Schädigungsmechanismen Werkst. doi: 10.1007/978-3-642-60074-6 Google Scholar
  31. 31.
    Vincke E, Verstichel S, Monteny J, Verstraete W (1999) A new test procedure for biogenic sulfuric acid corrosion of concrete. Biodegradation 10(6):421–428. doi: 10.1023/A:1008309320957 CrossRefGoogle Scholar
  32. 32.
    Vincke E, van Wanseele E, Monteny J (2002) Influence of polymer addition on biogenic sulfuric acid attack of concrete. Int Biodeterior Biodegrad 49(4):283–292. doi: 10.1016/S0964-8305(02)00055-0 CrossRefGoogle Scholar
  33. 33.
    DIN EN 196-1 (2005) Prüfverfahren für Zement—Teil 1: Bestimmung der Festigkeit. Ausgabe Mai 2005, Beuth Verlag, BerlinGoogle Scholar
  34. 34.
    DIN EN 197-1 (2011) Zusammensetzung, Anforderungen und Konformitätskriterien von Normalzement, Beuth Verlag, GermanyGoogle Scholar
  35. 35.
    Ride DR, Weast RC (1985) Handbook of chemistry and physics, 66th edn. CRC Press, OhioGoogle Scholar
  36. 36.
    Graubau J (1995) Untersuchungen zur Korrosion zementgebundener Materialien durch saure Wässer unter besonderer Berücksichtigung des Schwefelsäureangriffs. Ph.D Thesis, Hamburg University of TechnologyGoogle Scholar
  37. 37.
    Gunstmann C (2007) Rechnerische Simulation von Säurekorrosionsprozessen zementgebundener Materialien. Ph.D Thesis, Hamburg University of TechnologyGoogle Scholar
  38. 38.
    Holleman A, Wiberg E, Wiberg N (2007) Lehrbuch der anorganischen Chemie, Berlin [u.a.]. de GruyterGoogle Scholar

Copyright information

© RILEM 2015

Authors and Affiliations

  1. 1.Multifunctional Construction Materials GroupLeipzig UniversityLeipzigGermany

Personalised recommendations